Survey Sample Methods Evaluators' Toolbox Refreshment

Abhik Roy & Kristin Hobson

abhik.r.roy@wmich.edu & kristin.a.hobson@wmich.edu

Western Michigan University AEA Evaluation 2012 Session

Considering a Sampling Method

Considerations:

- Presampling Choices
- Sampling Choices
- Postsampling Choices

Presampling Choices

- What is the nature of the study?
- What are the variables of interest?
- What population is being targeted?
- How many units will be selected?
- Is sampling appropriate?

Sampling Choices

- What do you want to accomplish with data?
- How is the data distributed?

Postsampling Choices

- How is nonresponse or missing data dealt with? (e.g. ignoring, imputation, or deletion)
- Must the sample data be weighted?
- What are the necessary standard errors and confidence intervals for the study estimates?
- What were the issues for any bias and/or missingness?

Two types of Sampling

- Probability Sampling
 - Random selection.
 - Population representation given by a confidence interval.
 - Ability to generalize to a certain populous.
- Nonprobability Sampling
 - Probability is usually unknown.
 - Inability to generalize to any populous.
 - Three types: Convenience, Purposive, and Quota.

Nonprobability Sampling Methods

- Convenience
- Purposive
- Quota

Convenience Sampling

- "What you can get" method
- Example: 1936 Presidential election Alf Landon (R) v. Franklin D. Roosevelt (D) and the Literary Digest.

Purposive Sampling

- "Specific need" method
- Example: Asking a drug addict to find others who are also drug addicts. (Snowball sampling)

Quota Sampling

- "Deliberately setting numbers" method
- Example: A researcher wished to know how people in a community with primarily African Americans feel about the President. But probability sampling may miss the small populous of Japanese (a mutually exclusive subgroup).

Probability Sampling Methods

Census

- Simple Random Sampling (SRS)
- Systematic Random Sampling
- Stratified Random Sampling
- Cluster Random Sampling

Probability vs. Nonprobability Sampling

Basic Question: Do you wish to generalize?

Census

Census

Requirements

- 1. List of study population (called a sampling frame).
- 2. Count of the study population (N).
- 3. Sample size (n = N).
- 4. Full selection method.

Benefits of a Census

Strengths

- "Easy" to administer.
- Self-Weighting.
- Estimation of error is 0.
- Bias/Sampling error is 0.
- Simplification of data analysis.

Drawbacks of a Census

Weaknesses

- Extremely expensive.
- Extremely time consuming.

Equations

Table 1: Equations for a Census

	Estimator	Estimated Variance	Bound on the Error B
Population Mean	$\hat{\mu} = \overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$	$\hat{V}(\overline{y}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$	$2\sqrt{\hat{V}(\overline{y})} = 2\sqrt{\left(1-rac{n}{N} ight)rac{s^2}{n}}$
Population Total	$\hat{\tau} = N\overline{y} = \frac{N\sum_{i=1}^{n} y_i}{n}$	$\hat{V}(N\overline{y}) = N^2 \left(1 - \frac{n}{N}\right) \left(\frac{s^2}{n}\right)$	$2\sqrt{\hat{V}(N\overline{y})} = 2\sqrt{N^2\left(1-\frac{n}{N}\right)\left(\frac{s^2}{n}\right)}$
Population Proportion	$\hat{p} = \overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$	$\hat{V}(\overline{y}) = \left(1 - rac{n}{N} ight) rac{\hat{p}\hat{q}}{n-1}$	$2\sqrt{\hat{V}(\overline{y})} = 2\sqrt{\left(1-rac{n}{N} ight)rac{\hat{p}\hat{q}}{n-1}}$

n = sample size

N = population size

s = sample standard deviation

 $y_i = total observations$

 $\hat{q} = 1 - \hat{p}$

When Should You Use a Census?

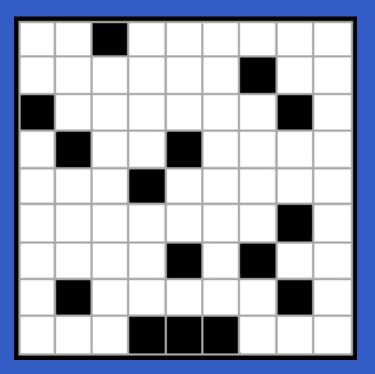
- 1. Small sample.
- 2. Generalize to an overall populous.

Examples of a Census

- 1. Survey of work conditions at a small restaurant.
- 2. Evaluation of teachers in a school.
- 3. Exception: U.S. population.

Simple Random Sampling (SRS)

•



Simple Random Sampling (SRS)

- Requirements
- 1. List of study population (called a sampling frame).
- 2. Count of the study population (N).
- 3. Sample size (n).
- 4. Random selection method.

Benefits of a SRS

Strengths

- Easy to administer.
- Self-Weighting.
- Estimation of error is easy to calculate.
- Minimization of bias/sampling error.
- Simplification of data analysis.

Drawbacks of a SRS

Weaknesses

- Vulnerable to sampling errors.
- Possible underrepresentation of subgroups.
- Can be tedious, costly, and possibly impractical.

Equations

Table 2: Equations for Estimating Population (Simple Random Sampling)

	Estimator	Estimated Variance	Bound on the Error B
Population Mean	$\hat{\mu} = \overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$	$\hat{V}(\overline{y}) = \left(1 - rac{n}{N} ight) rac{s^2}{n}$	$2\sqrt{\hat{V}(\overline{y})} = 2\sqrt{\left(1-rac{n}{N} ight)rac{s^2}{n}}$
Population Total	$\hat{\tau} = N\overline{y} = rac{N\sum\limits_{i=1}^{n}y_{i}}{n}$	$\hat{V}(N\overline{y}) = N^2 \left(1 - \frac{n}{N}\right) \left(\frac{s^2}{n}\right)$	$2\sqrt{\hat{V}(N\overline{y})} = 2\sqrt{N^2\left(1-\frac{n}{N}\right)\left(\frac{s^2}{n}\right)}$
Population Proportion	$\hat{p} = \overline{y} = \frac{\sum_{i=1}^{n} y_i}{n}$	$\hat{V}(\overline{y}) = \left(1 - rac{n}{N} ight) rac{\hat{p}\hat{q}}{n-1}$	$2\sqrt{\hat{V}(\overline{y})} = 2\sqrt{\left(1-rac{n}{N} ight)rac{\hat{p}\hat{q}}{n-1}}$

n = sample size

N = population size

s = sample standard deviation

 $y_i = total observations$

 $\hat{q} = 1 - \hat{p}$

Equations

•

	Table 3: Equations for	or Estimating Sample Siz	ze (Simple Random Sampling)
--	------------------------	--------------------------	-----------------------------

	Sample Size Required	Calculation of D
Estimate $\hat{\mu}$ with a bound B	$n = \frac{N\sigma^2}{(N-1)D + \sigma^2}$	$D = \frac{B^2}{4}$
Estimate $\hat{ au}$ with a bound B	$n = \frac{N\sigma^2}{(N-1)D + \sigma^2}$	$D = \frac{B^2}{4N^2}$
Estimate \hat{p} with a bound B	$n = \frac{N p q}{(N-1)D + p q}$	$D = \frac{B^2}{4N^2}$

n = sample size

N = population size

D = discriminant

 $\sigma =$ population standard deviation

$$q = 1 - p$$

When Should You Use a SRS?

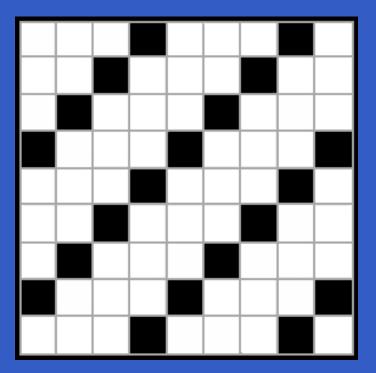
- 1. Large sample.
- 2. Complete sampling frame.
- 3. Generalize to a specific populous.
- 4. Not a great deal of information is available about the population.
- 5. Data collection can be efficiently performed on randomly distributed items.
- 6. Low cost of sampling.

Examples

- 1. Survey of a large corporation with multiple subsidiaries.
- 2. Survey of college students who use condoms.

Systematic Random Sampling

•



Systematic Random Sampling

Requirements

- 1. List of study population (called a sampling frame).
- **2.** Count of the study population (N).
- 3. Sample size (n).
- 4. Choose a sampling interval (every *k*th*element*)
- 5. Random start (at an k^{th} element).
- 6. Units are random ordered.
- 7. For a 1-in-k sampling, $k \le n/N$.

Benefits of a Systematic Random Sampling

- Strengths
 - Easy to administer.
 - Simple selection process.
 - Less subjective to selection error than SRS.
 - Most likely will provide a more robust information set per unit cost than SRS.
 - May provide more information about a population than in SRS.

- •
- **Drawbacks of a Systematic Random Sampling**

- Weaknesses
 - Vulnerable to periodicities.
 - Dependence on a previous and next unit.

Equations

Table 4: Equations for Estimating Population (Systematic Random Sampling)

	Estimator	Estimated Variance	Bound on the Error B
Population Mean	$\hat{\mu} = \overline{y}_{SY} = \frac{\sum_{i=1}^{n} y_i}{n}$	$\hat{V}(\overline{y}_{sy}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$	$2\sqrt{\hat{V}(\overline{y}_{sy})} = 2\sqrt{\left(1-\frac{n}{N}\right)\frac{s^2}{n}}$
rotai	n	$\hat{V}(N\overline{y}_{sy}) = N^2 \left(1 - \frac{n}{N}\right) \left(\frac{s^2}{n}\right)$	$2\sqrt{\hat{V}(N\overline{y}_{sy})} = 2\sqrt{N^2\left(1-\frac{n}{N}\right)\left(\frac{s^2}{n}\right)}$
Population Proportion	$\hat{p}_{sy} = \overline{y}_{sy} = \frac{\sum_{i=1}^{y_i} y_i}{n}$	$\hat{V}(\overline{y}_{sy}) = \left(1 - \frac{n}{N}\right) \frac{\hat{p}_{sy}\hat{q}_{sy}}{n-1}$	$2\sqrt{\hat{V}(\overline{y}_{sy})} = 2\sqrt{\left(1 - \frac{n}{N}\right)\frac{\hat{p}\hat{q}}{n-1}}$

n = sample size

N = population size

s = sample standard deviation

 $y_i = total observations$

 $\hat{q_{sy}} = 1 - \hat{p_{sy}}$

Equations

•

	Sample Size Required	Calculation of D
Estimate $\hat{\mu}$ with a bound B	$n = \frac{N\sigma^2}{(N-1)D + \sigma^2}$	$D = \frac{B^2}{4}$
Estimate $\hat{ au}$ with a bound B	$n = \frac{N\sigma^2}{(N-1)D + \sigma^2}$	$D = \frac{B^2}{4N^2}$
Estimate \hat{p} with a bound B	$n = \frac{N p q}{(N-1)D + p q}$	$D = \frac{B^2}{4N^2}$

Table 5: Equations for Estimating Sample Size (Systematic Random Sampling)

n = sample size

N = population size

D = discriminant

 $\sigma =$ population standard deviation

$$q = 1 - p$$

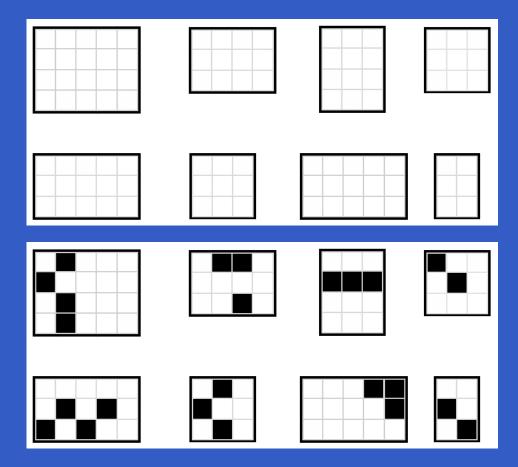
- •
- When Should You Use a Systematic Random Sampling?

- 1. Given population is homogeneous.
- 2. Sample units are uniformly distributed over a population.

Examples of a Systematic Random Sampling

- 1. Sampling a neighborhood with 10 houses on each block.
- 2. Cars on a factory line.

Stratified Random Sampling



Stratified Random Sampling

- Types
 - 1. Equal.
- 2. Proportionate.
- 3. Optimum.

Stratified Random Sampling

- Requirements
- 1. List of study population (called a sampling frame).
- 2. Count units in each stratum.
- 3. Sample size for each stratum.
- 4. Random selection methodology for each stratum.

•

Benefits of a Stratified Random Sampling

Strengths

- Reduced standard error and increases precision compared to SRS.
- Guaranteed inclusion of members for each defined category.
- Reduced sampling error.
- Less variability than an SRS.

- •
- **Drawbacks of a Stratified Random Sampling**

- Weaknesses
 - Can be expensive.
 - Subgroups must be implicitly defined.

Equations

Table 4: Equations for Estimating Population (Stratified Random Sampling)

	Estimator	Estimated Variance	Bound on the Error B
Population Mean	$\hat{\mu} = \overline{y}_{st}$ $= \frac{\frac{1}{N} \sum_{i=1}^{L} \overline{y}_{i}}{n}$	$\hat{V}(\overline{y}_{st}) = \frac{1}{N^2} \sum_{i=1}^{L} N_i^2 \left(1 - \frac{n_i}{N_i}\right) \frac{s_i^2}{n_i}$	$2\sqrt{\hat{V}(\overline{y}_{st})} = 2\sqrt{\frac{1}{N^2}\sum_{i=1}^{L}N_i^2\left(1-\frac{n_i}{N_i}\right)\frac{s_i^2}{n_i}}$
Population Total	$\hat{\tau} = N \overline{y}_{st}$ $= \sum_{i=1}^{L} N_i \overline{y}_i$	$ \hat{V}(N\overline{y}_{st}) = \\ \sum_{i=1}^{L} N_i^2 \left(1 - \frac{n_i}{N_i}\right) \left(\frac{s_i^2}{n_i}\right) $	$2\sqrt{\hat{V}(N\overline{y}_{st})} = 2\sqrt{\sum_{i=1}^{L} N_i^2 \left(1 - \frac{n_i}{N_i}\right) \left(\frac{s_i^2}{n_i}\right)}$

- n =sample size = number of sampling units in a population
- N = population size
- s = sample standard deviation
- L = number of strata = number of sampling units in strata i

Equations 1/2

Table 6: Equations for Estimating Sample Size (Stratified Random Sampling)

	Sample Size Required	Calculation of D
Estimate $\hat{\mu}$ with a bound B (Equal Allocation)	$n = \frac{\sum_{i=1}^{L} N_i^2 \sigma_i^2 / a_i}{N^2 D + \sum_{i=1}^{L} N_i \sigma_i^2}$	$D = \frac{B^2}{4}$
Estimate $\hat{ au}$ with a bound B (Equal Allocation)	$n = \frac{\sum_{i=1}^{L} N_i^2 \sigma_i^2 / a_i}{N^2 D + \sum_{i=1}^{L} N_i \sigma_i^2}$	$D = \frac{B^2}{4N^2}$

n = sample size

- N = population size
- D = discriminant
- $\sigma = population$ standard deviation
- a = fraction of observations dedicated to the stratum i

Equations 2/2

Table 6: Equations for Estimating Sample Size (Stratified Random Sampling)

	Sample Size Required	Calculation of D
Estimate $\hat{\mu}$ with a bound B (Neyman Allocation)	$n = \frac{\left(\sum_{i=1}^{L} N_k \sigma_k\right)^2}{N^2 D + \sum_{i=1}^{L} N_i \sigma_i^2}$	$D = \frac{B^2}{4}$
Estimate $\hat{\mu}$ with a bound B (Proportional Allocation)	$n = \frac{\sum_{i=1}^{L} N_i \sigma_i^2}{ND + \frac{1}{N} \sum_{i=1}^{L} N_i \sigma_i^2}$	$D = \frac{B^2}{4}$

n = sample size

- N = population size
- D = discriminant
- $\sigma =$ population standard deviation
- $a\,=\,$ fraction of observations dedicated to the stratum i

•

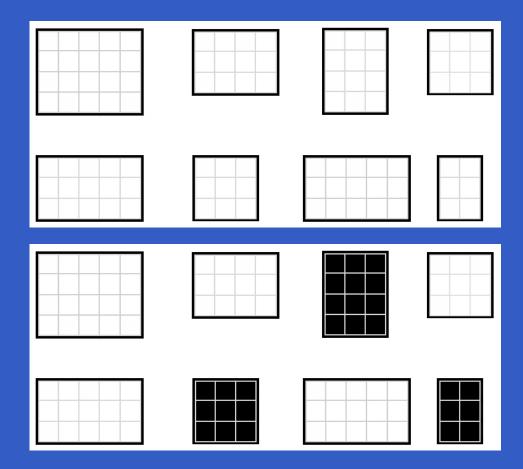
When Should You Use a Stratified Random Sampling?

- 1. Strata is mutually exclusive.
- 2. Strata are collectively exhaustive.

Examples of Stratified Sampling

Sampling students by gender in a school.
 Sampling people by country.

Cluster Random Sampling



Cluster Random Sampling

- Requirements
- 1. List of clusters.
- 2. Approximate size of clusters.
- 3. Number of clusters to be sampled.
- 4. Random selection methodology for each stratum.

Benefits of a Cluster Random Sampling

Strengths

- No need for a sampling frame.
- Clusters can be stratified if necessary.
- Cost efficient since clusters are housed close together (reduces the average cost per interview).
- Increased precision from stratified sampling.

•

Drawbacks of a Cluster Random Sampling

Weaknesses

- Requires a larger sample size than SRS.
- May not represent diversity within a populous.
- May have high sampling error.

Equations

Table 7: Equations for Estimating Population (Cluster Random Sampling)

Estimator	Estimated Variance	Bound on the Error B			
Population $\hat{\mu} = \overline{y} = rac{\displaystyle\sum_{i=1}^n y_i}{\displaystyle\sum_{i=1}^n m_i}$ Mean	$\hat{V}(\overline{y}) = \left(1 - \frac{n}{N}\right) \frac{s_r^2}{n\overline{M}^2}$	$2\sqrt{\hat{V}(\overline{y})} = 2\sqrt{\left(1-rac{n}{M} ight)rac{s_r^2}{n}\overline{M}^2}$			
Population $\hat{\tau} = M\overline{y} = Mrac{\displaystyle\sum_{i=1}^{n}y_{i}}{\displaystyle\sum_{i=1}^{n}m_{i}}$	$\hat{V}(M\overline{y}) = N^2 \left(1 - \frac{n}{N}\right) \frac{s_r^2}{n\overline{M}^2}$	$2\sqrt{\hat{V}(M\overline{y})} = 2\sqrt{N^2\left(1-\frac{n}{M}\right)\frac{s_r^2}{n}}$			
Population $\hat{\tau} = N\overline{y} = \frac{N}{n}\sum_{i=1}^{n}y_i$ Total*	$\hat{V}(M\overline{y}_t) = N^2 \left(1 - \frac{n}{N}\right) \frac{s_t^2}{n}$	$2\sqrt{\hat{V}(M\overline{y})} = 2\sqrt{N^2\left(1-\frac{n}{M}\right)\frac{s_t^2}{n}}$			
$n = \text{sample size} = \text{number of clusters selected in a SRS, } s_r^2 = \frac{\sum_{i=1}^n (y_i - \overline{y}m_i)^2}{n-1}, s_t^2 = \frac{\sum_{i=1}^n (y_i - \overline{y}_i)^2}{n-1}$ $N = \text{number of clusters in a population} = \text{number of elements in cluster } i, \overline{m} = \frac{1}{n} \sum_{i=1}^n m_i = \text{average cluster size for the sample}$					
$m_{i=1}$ $s = sample standard deviation, M = \frac{1}{n} \sum_{i=1}^{N} m_i = number of elements in the population, \overline{M} = \frac{M}{n} = average cluster size for the population$					
*Not dependent on M , $y_i =$ total observatio	ns in the i^{th} cluster • • •	• • • •			

Survey Sample Methods - p. 50/54

۲

Equations

Table 8: Equations for Estimating Sample Size (Cluster Random Sampling)

	Sample Size Required	Calculation of D
Estimate $\hat{\mu}$ with a bound B	$n = \frac{\sigma_r^2}{ND + \sigma_r^2}$	$D = \frac{B^2 \overline{M}^2}{4}$
Estimating $ au$ when M is known		$D = \frac{B^2}{4N^2}$
Estimating $ au$ when M is unknown	$n = \frac{\sigma_t^2}{ND + \sigma_t^2}$	$D = \frac{B^2}{4N^2}$

n = sample size

N = population size

D = discriminant

 $\sigma =$ population standard deviation

a = fraction of observations dedicated to the stratum i

When Should You Use a Cluster Random Sampling?

- 1. Clusters is mutually exclusive.
- 2. Clusters are collectively exhaustive.
- 3. Sampling selected clusters.
- 4. You do not have a full sampling frame.

Examples of Cluster Sampling

- 1. Selecting all houses in multiple blocks for sampling.
- 2. Sampling different classrooms in a school.

References

Scheaffer, R. L., Mendenhall, W., Ott, R. L., & Gerow, K. G. (2011). *Elementary survey sampling*. (7 ed.). Boston, MA: Brooks/Cole.