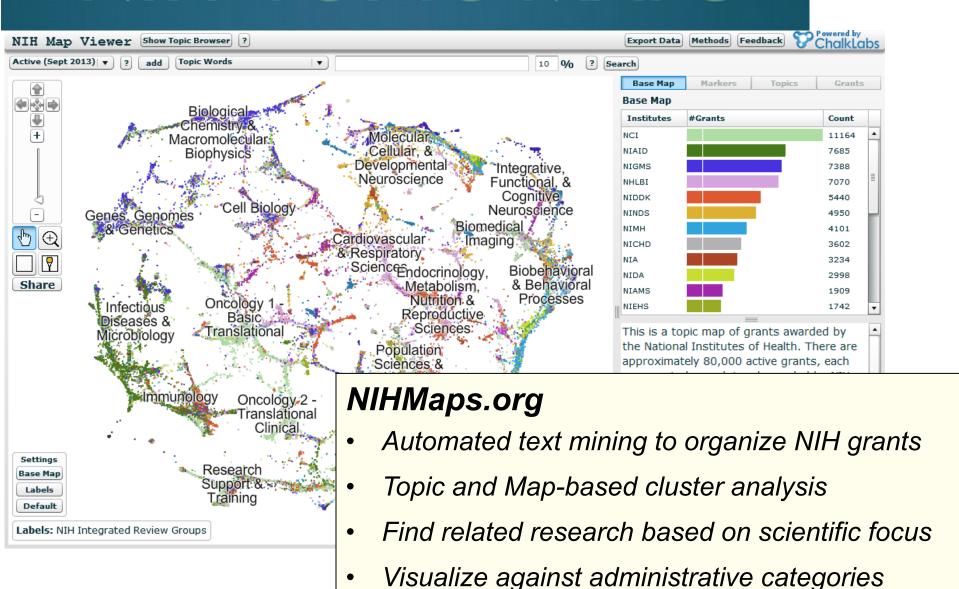
Portfolio Analysis for Basic Biomedical Research Using NIHMaps: Lessons Learned and Future Possibilities

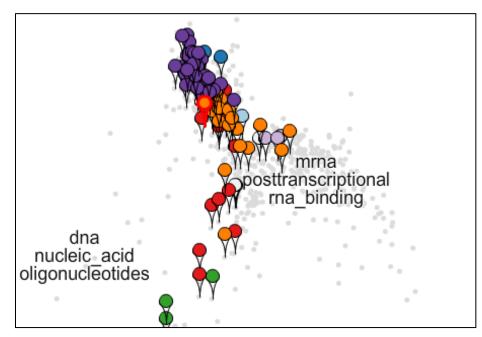
Lisa Dunbar


National Institute of General Medical Sciences (NIGMS)

Ned Talley

National Institute of Neurological Disorders and Stroke (NINDS)

A Topic Database of NIH-Funded Grants


Two Independent Clustering Methods

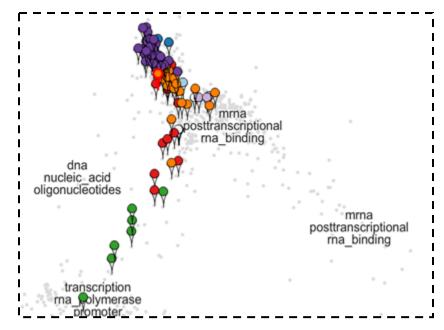
Map-Based Clustering

 ~1000 clusters, organized in 2D space to reveal local and global relations

Topic Modeling

- "Soft" clustering documents fall in multiple categories
- Automatic determination of latent categories from word occurrences in text
- Context sensitive accommodates diverse word meanings
- Doesn't rely on biomedical thesaurus – useful for basic research categories

Top Topic	#Grants	Count
trna ribosome codon ribosomal		33
translation mrna protein_synth		23
rna_processing rna_binding pro		16
transcription rna_polymerase pr		8
selenium selenoprotein selenoc		3
mrna posttranscriptional rna_bi		3
binding conformational structur		2


Two Independent Clustering Methods

Map-Based Clustering

 ~1000 clusters, organized in 2D space to reveal local and global relations

Topic Modeling

- "Soft" clustering documents fall in multiple categories
- Automatic determination of latent categories from word occurrences in text
- Context sensitive accommodates diverse word meanings
- Doesn't rely on biomedical thesaurus – useful for basic research categories

Top Topic	#Grants	Count	
trna ribosome codon ribosomal		33	
translation mrna protein_synth		23	
rna_processing rna_binding pro		16	
transcription rna_polymerase pr		8	
selenium selenoprotein selenoc		3	
mrna posttranscriptional rna_bi		3	
binding conformational structur		2	

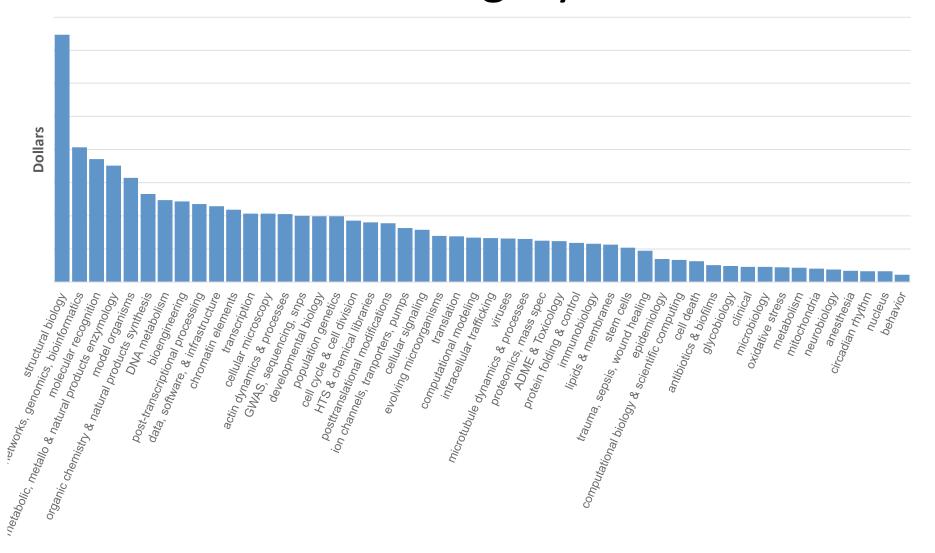
Topic Modeling vs. NIH Research Condition Disease Categorization (RCDC) System

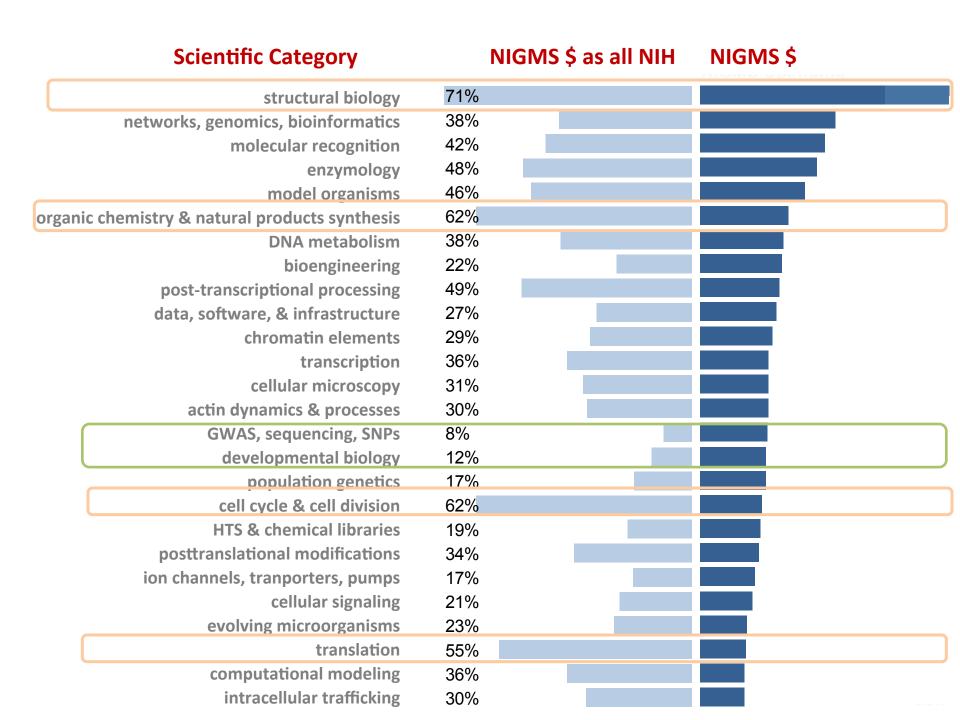
RCDC System

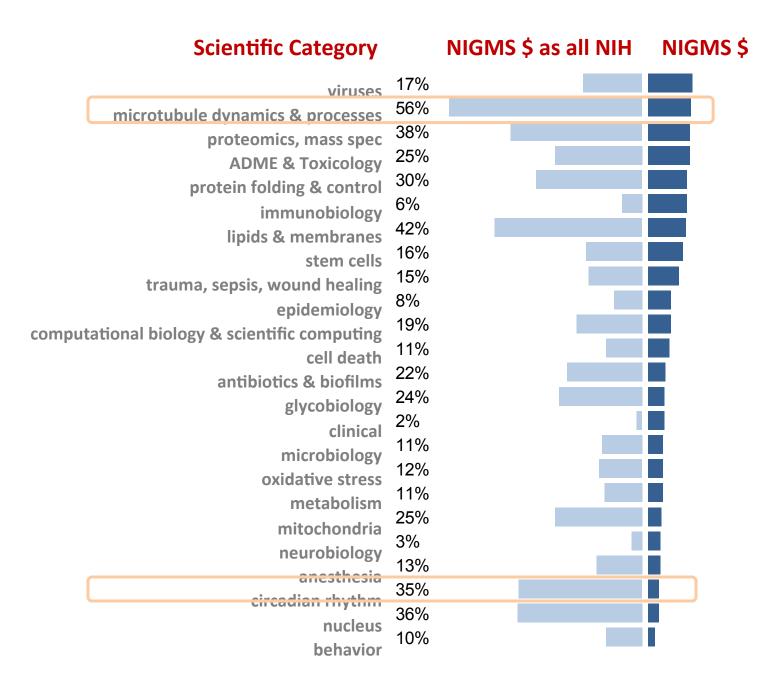
- Supervised classification based on keyword weighting
- Biomedical thesaurus extracts keywords/concepts
- Domain experts set weightings to classify grants for official NIH spending reports

Topic Modeling

- Unsupervised clustering categories used for discovery of hidden trends
- Doesn't use thesaurus good for basic research and for technologies important to biomedicine
- Same words assigned to different concepts depending on context, topics quantified by word count


Why Use an Automated Tool for Portfolio Analysis?


- Objectivity not tied to rater's biases and expertise
- Consistency no inter rater or intra rater variability
- Transparency algorithm can be shared
- Tunable usually quantitative parameters that can be adjusted
- Scalable can be applied to vast numbers of documents and variables


Manual curation and validation still required

- Excluded non-scientific topics; applied threshold weighting; restricted topics to those accounting for 90% of GM \$
- Consolidated ~350 topics into 50 categories based on topic co-occurrence and subject matter experts *labor intensive*
- Validation of grants in appropriate scientific category by subject matter experts *labor intensive*

NIGMS Investment by Scientific Category

Distribution across scientific divisions

_	В	C	D	Р
structural biology	15.3%	72.6%	5.1%	7.0%
networks, genomics, bioinformatics	43.4%	32.0%	17.5%	7.1%
molecular recognition	3.9%	58.7%	13.6%	23.9%
enzymology	0.9%	17.4%	8.8%	72.9%
model organisms	2.6%	17.7%	73.5%	6.2%
organic chemistry & natural products synthesis	0.5%	4.0%	1.5%	94.0%
DNA metabolism	0.1%	10.5%	78.7%	10.7%
data, software, & infrastructure post-transcriptional processing bioengineering		16.4%	8.6%	6.6%
		20.6%	67.6%	5.6%
		26.9%	7.1%	23.1%
chromatin elements	1.2%	11.3%	78.9%	8.6%
GWAS, sequencing, snps	7.9%	13.7%	57.3%	21.0%
actin dynamics & processes	5.5%	71.0%	16.9%	6.6%
population genetics	11.5%	6.2%	70.5%	11.8%
transcription	1.4%	20.5%	69.7%	8.4%
developmental biology	3.3%	16.7%	70.3%	9.7%
cellular microscopy		61.3%	5.6%	6.7%
cell cycle & cell division	1.7%	38.6%	57.0%	2.6%
posttranslational modifications	6.5%	23.8%	34.2%	35.5%
cellular signaling	4.0%	30.5%	21.6%	43.9%
HIS & chemical libraries	5.8%	32.0%	4.8%	57.5%
ion channels, tranporters, pumps	6.9%	64.0%	6.6%	22.5%
computational modeling	70.7%	11.0%	13.6%	4.7%
evolving microorganisms	8.0%	29.3%	51.7%	11.0%
ADME & Toxicology	2.6%	3.7%	2.6%	91.1%

B: Biomedical Technology,
Bioinformatics, &
Computational Biology

C: Cell Biology & Biophysics

D: Developmental Biology & Genetics

P: Pharmacology, Physiology,& Biological Chemistry

Detecting shared interests among Institutes

Investment as \$ of NIH total for each topic and category

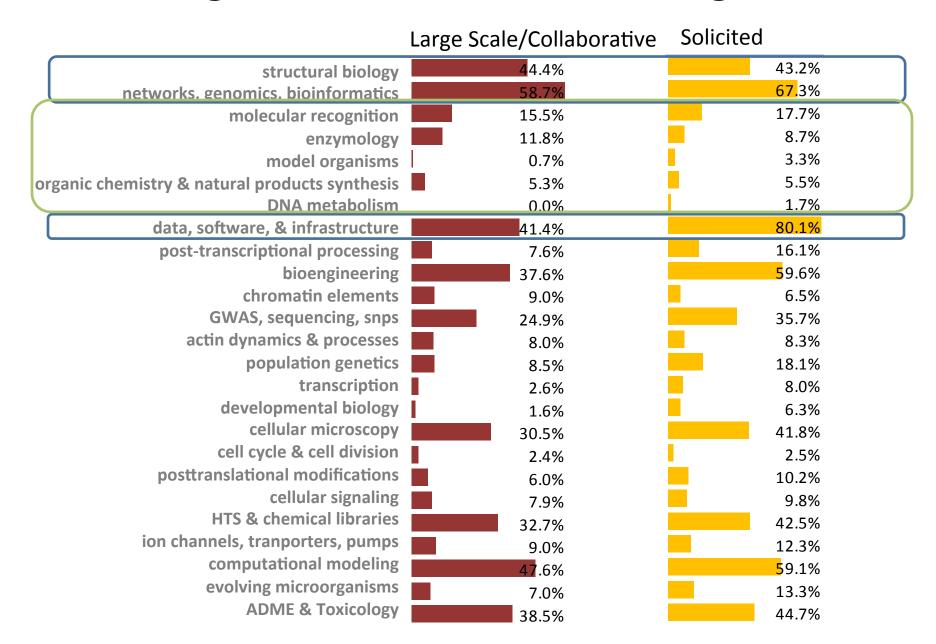
	NIGMS	NIBIB
■ structural biology	72.4%	3.8%
crystallization, crystals, x_ray_crystallography, protein, structure_determination, structure	96.4%	1.0%
structural, complexes, biochemical, molecular, structure, x_ray_crystallography, proteins,	57.8%	0.0%
computational, simulations, molecular dynamics, protein, structures, molecular, structure	89.3%	0.8%
nuclear_magnetic_resonance, spin, structure, nmr_spectroscopy, labeled, _15n, _13c, solu	56.9%	20.7%
shape, structure, size, organization, _3d, architecture, assembly, shaped, arrangement, org	40.6%	1.9%
spectroscopy, raman_spectroscopy, spectral, sers, optical, infrared, scattering, laser, vibra	47.5%	22.0%
nuclear_magnetic_resonance, spectrometer, instrument, mhz, electron_paramagnetic_reso	38.3%	47.9%

- NIBIB (biomedical imaging and bioengineering) focuses on instrumentation and technology development
- NIGMS projects focus on application of these instruments to solve molecular structures

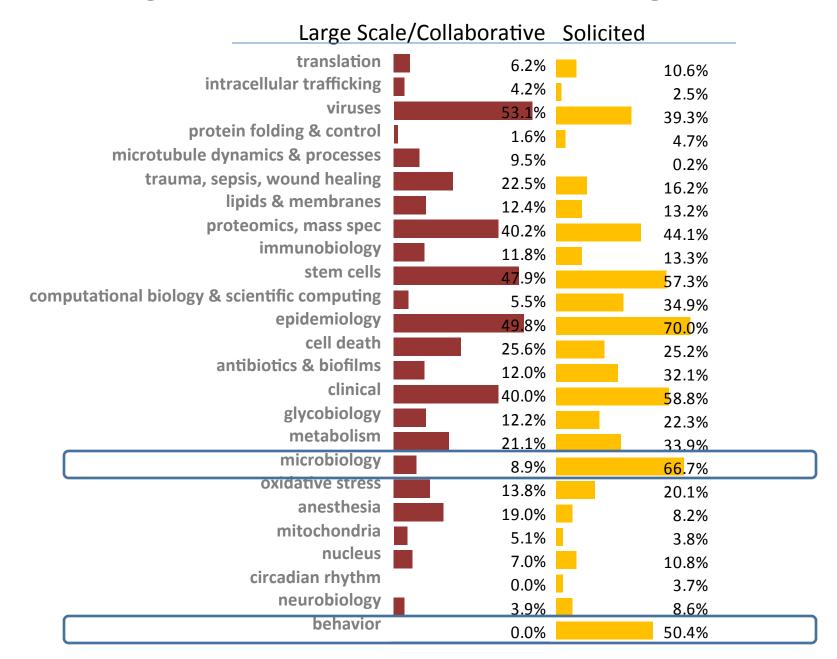
Detecting emerging topics and categories

Categories by percentage of \$ invested in projects by age

Newer projects			Established projects		
	40.4	< 10			
Category Name	>10 Yrs	Yrs	Category Name	>10 Yrs	< 10 Yrs
networks, genomics, bioinformatics	35%	65%	enzymology	62%	38%
bioengineering	39%	61%	DNA metabolism	66%	34%
population genetics	35%	65%	transcription	64%	36%
computational modeling	39%	61%	translation	60%	40%
stem cells	15%	85%	intracellular trafficking	66%	34%
computational biology &	34%	66%	protein folding & control	66%	34%
scientific computing			microtubule dynamics &	60%	40%
epidemiology	21%	79%	processes		
clinical	27%	73%	lipids & membranes	61%	39%
microbiology	21%	79%	oxidative stress	63%	37%
behavior	18%	82%	circadian rhythm	65%	35%


Clusters with >59% invested in either Projects in years 1-10 or Projects in years >10 are highlighted

Investment by project age within scientific categories


	Estab.	New
post-transcriptional processing	49.8%	50.2%
rna_processing, rna_binding, processing, dead_box, rna, mrna, rrna, assembly, proteins, rnase, expor	61.9%	38.1%
rna_splicing, alternative_splicing, pre_mrna, rna, exon, intron, splice, mrna, transcripts, proteins	55.7%	44.3%
noncoding_rna, ncrnas, transcripts, antisense, noncoding, mrna, protein_coding, small_rna, gene_expr	32.7%	67.3%
rna, rna_interference, small_rna, silencing, sirna, gene_silencing, dicer, mirna, dsrna, editing, ar	43.3%	56.7%
microrna, mirna, mir, microrna_mirnas, mrna, targets, genes, noncoding_rna, gene_expression, _3_utr,	37.7%	62.3%

stem cells	15.0%	85.0%
pluripotent, stem_cells, differentiation, ips_cells, cells, human, reprogramming, ips, es_cells, plu	7.0%	93.0%
regeneration, stem_cells, regenerative, tissue_regeneration, regenerative_medicine, repair, adult, p	33.9%	66.1%
differentiation, stem_cell, tissue_engineering, mesenchymal_stem_cells, _3d, mscs, tissue, cells, mi	11.3%	88.7%
stem_cells, progenitor_cells, differentiation, lineage, population, markers, stem, self_renewal, adu	73.8%	26.2%

Funding mechanisms across categories

Funding mechanisms across categories

Lessons learned

Valuable exploration tool to address portfolio analysis

- Quantitative analysis of the major scientific investments of NIGMS;
 proportionally alloted dollars to multiple categories per grant.
- Identify areas of shared interest across Institutes
- How scientific categories map to administrative portfolio structures across and within Divisions
- Identify emerging and more established areas of science

Lessons learned

- Manual curation and validation is labor intensive and requires subject matter experts
- Granularity: Algorithms to assist in clustering topics into categories and generating meaningful labels for these categories would be valuable.
- Subsequent analyses expected to be less daunting:
 - Validation carried out "trust" the data; know where to focus efforts
 - Categories and labels created. Do not expect major changes year-to-year