Visualizing

Multiple Linear Regression and Binary Logistic Regression Models

Skill Building Workshop
Evaluation 2014, Denver, CO

Before

Multiple linear regression Binary logistic regression

After

Multiple linear regression Binary logistic regression

Figure 1. Blood Pressure Drivers

This chart presents Pratt Index scores that express multiple linear regression coefficients, where the dependent variable is blood pressure, and three independent variables, as a percentage of total variance $.116 \mathrm{x}_{3} ; \mathrm{R}^{2}=.99$, all coefficients are statistically significant, $a<0.01$).

Figure 2. Passenger Class as Survival Driver

This chart presents conditional probabilities and odds that express binary logistic regression coefficients, where the dependent variable is survival, the model equation: $\ln (\mathrm{y})=-1.071+1.557 \mathrm{x}_{1}+.787_{2}$; Correct predictions: 68%. Omnibus test of model coefficients: $X^{2}=127.8$, all coefficients are statistically significant, $a<0.01 .-2$ Log Likelihood
1,$613 ;$ Cox \& Snell $R^{2}=.093$; Nagelkerke $R^{2}=.126$.

Introduction: Model Goals

Introduction: Multiple Regression

Introduction: the Math

$$
\begin{aligned}
& y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{j} x_{j}+\beta_{q} x_{q}+\varepsilon \\
& \alpha=\text { Constant or intercept } \\
& \beta_{1} \rightarrow \beta_{q}=\text { Coefficients } \\
& x_{1} \rightarrow x_{q}=\text { Explanatory variables } \\
& \ln \left(\frac{p}{1-p}\right)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{j} x_{j}+\beta_{q} x_{q}+\varepsilon \\
& p=\text { Probability of event occurring } \\
& \frac{p}{1-p}=\text { odds ratio }
\end{aligned}
$$

Pratt Index—Example 1

Key Drivers of Satisfaction with School Culture

Student community and the learning environment are key drivers of satisfaction.

Pratt index scores; Multiple R=.77

Pratt Index——Partition of R^{2}

Just for reference: $\quad y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{j} x_{j}+\beta_{p} x_{p}+\varepsilon_{i}$

Closest to Semipartial Correlation

Blood Pressure Dataset

4		A	B	C	D	E	F	G	H
1	Pt		BP	Age	Weight	BSA	Dur	Pulse	Stress
2		1	105	47	85.4	1.75	5.1	63	33
3		2	115	49	94.2	2.10	3.8	70	14
4		3	116	49	95.3	1.98	8.2	72	10
5		4	117	50	94.7	2.01	5.8	73	99
6		5	112	51	89.4	1.89	7.0	72	95
7		6	121	48	99.5	2.25	9.3	71	10
8		7	121	49	99.8	2.25	2.5	69	42
9		8	110	47	90.9	1.90	6.2	66	8
10		9	110	49	89.2	1.83	7.1	69	62
11		10	114	48	92.7	2.07	5.6	64	35
12		11	114	47	94.4	2.07	5.3	74	90
13		12	115	49	94.1	1.98	5.6	71	21
14		13	114	50	91.6	2.05	10.2	68	47
15		14	106	45	87.1	1.92	5.6	67	80
16		15	125	52	101.3	2.19	10.0	76	98
17		16	114	46	94.5	1.98	7.4	69	95
18		17	106	46	87.0	1.87	3.6	62	18
19		18	113	46	94.5	1.90	4.3	70	12
20		19	110	48	90.5	1.88	9.0	71	99
21		20	122	56	95.7	2.09	7.0	75	99

Regression Output

Coefficients ${ }^{\text {² }}$

Model		Unstandardized Coeficients		$\begin{gathered} \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \end{gathered}$	t	Sig.	Correlations		
		B	Std. Error				Zero-order	Pattial	Part
1	(Constant)	-13.667	2.647		-5.164	000			
	Age Age, in years	. 302	. 044	323	15.961	000	. 659	. 970	295
	Weight Weight, in kg	. 906	. 049	717	18.490	. 000	. 950	97?	. 341
	BSA Body Surace Area	4.627	1.521	116	3.042	. 008	. 866	605	. 056

a. Dependent Variable: BF Blood Pressure

Correlations

		$\begin{aligned} & \hline \text { BP Blood } \\ & \text { Pressure } \end{aligned}$	Age Age, in	Wieitht Wieight, in kg	BSA Body Surface Area
BP Blood Pressure	Pearson Correation	1	. $659^{\text {x }}$	$)^{.950} 0^{\text {2x }}$. $866^{\text {7x }}$
	Sild. (2-tailed)		. 012	. 000	000
	N	20	20	20	20

Pratt Index-How To

Variable	$\boldsymbol{\beta}$	\boldsymbol{r}	$\boldsymbol{\beta}^{*} \boldsymbol{r}$	$\%$
Age in years	0.323	0.659	0.213	21.4%
Weight in kg	0.717	0.950	0.681	68.5%
Body Surface Area (BSA)	0.116	0.866	0.101	10.1%
SUM			0.995	100.0%

Whadel	R	E: Square	Adusted R Square	Std. Entor of the Etimate
1	$.997^{3}$.995	D	.497

a. Predictors: (Constant), ESA Body Surface Area, Age Age, in years, IWeight theight, in kg

Pratt Index—Check,Your Worksheet

Pratt Index—Example 2 Becoming More Effective Volunteer

This chart presents Pratt Index scores that express multiple linear regression coefficients, where the dependent variable is the Volunteer effectiveness measure, and 15 independent variables covering Volunteer personal and post organizational characteristics, training, and ongoing staff support and site management, as a percentage of total variance explained by the model (standardized equation: $\mathrm{y}=.184 \mathrm{x}_{1}+.058 \mathrm{x}_{2}+.075 \mathrm{x}_{3}+.220 \mathrm{x}_{4}+.090 \mathrm{x}_{5}+.052 \mathrm{x}_{6}+.075 \mathrm{x}_{7}+.040 \mathrm{x}_{8}+.116 \mathrm{x}_{9}+.113 \mathrm{x}_{10}+.089 \mathrm{x}_{11}+.053 \mathrm{x}_{12}+$ Source: Peace Corps, Voice of the Volunteer, 2013

Pratt Index-Example 3

Relative Importance of BA Effectiveness Drivers ${ }^{1}$
Proportion of Explained Variance ${ }^{2}$ Accounted for by Each Driver

Assumptions

1) Relative importance depends only on the means, variances and correlations of $y, x_{1}, x_{2}, \ldots, x_{j}, x_{p}$.
2) Relative importance is not affected by linear transformations of any variable.
3) The relative importance of x_{1} to x_{2} is as m to $n=>$ positive $\beta_{j} r_{j}$!
4) The non-singular linear transformation of a subset of $\left(x_{1}, \ldots, x_{q}\right)$ into the subset $\left(x_{1}^{\prime}, \ldots, x_{q}{ }^{\prime}\right)$ does not affect its importance relative to other variables.
5) The addition of a pure noise variable, independent of y and x_{1}, \ldots, x_{p}, to a subset of variables does not affect importance of the subset relative to other variables.

Major Criticisms

- Negative $\beta_{j} r_{j}=$ negative importance?
- x orthogonal to y, but nonetheless increases R^{2}.

Titanic Dataset

row.names	pclass	survived	name age		embarked home.des room			ticket	boat	sex
	1st		1 Allen, Mis	29	Southamps	St Louis, NB	B-5	24160 L22:		female
	1st		Allison, M	2	Southamp	Montreal,	C26			female
	1st		Allison, M	30	SouthamFM	Montreal,	C26		-135	male
	1st		Allison, M	25	SouthamF	Montreal,	C26			female
	1st		1 Allison, M	0.9167	SouthamF	Montreal,	C22			male
	1st		1 Anderson	47	Southamp	New York,	E-12		3	male
	1st		1 Andrews,	63	Southamp H	Hudson, ND	D-7	13502 L77	10	female
	1st		Andrews,	39	Southamp	Belfast, N A	A-36			male
	1st		1 Appleton,	58	Southamp	Bayside, CC	C-101			female
10			Artagavey	71	Cherbour\&	Montevide	eo, Urug			male
			Astor, Col	47	Cherbours	New York,	NY	17754 L22	-124	male
			1 Astor, Mrs	19	Cherbour¢	New York,	NY	17754 L22 6		female
13	1st		1 Aubert, M NA		Cherbourt	Paris, Frar B	B-35	17477 L69		female
14			1 Barkwortr NA		Southamp	Hessle, YCA	A-23		B	male
15	1st		Baumann, NA		Southamp	New York,	NY			male
16			1 Baxter, Mı	50	Cherbouren	Montreal, B	B-58/60			female
			Baxter, Mı	24	Cherbours	Montreal, B	B-58/60			male
	1st		Beattie, N	36	Cherbourg	Winnipeg C	C-6			male
			1 Beckwith,		Southamp	New York, D	D-35			male
			1 Beckwith,		Southamp	New York, D	D-35			female
			1 Behr, Mr k	26	Cherbouŗ	New York,	C-148			male
									,	
1310	3rd		Zakarian, INA							male
1311	3rd		Zenn, Mr INA							male
1312	3rd		Zievens, FNA							female
1313	3rd		Zimmerm NA							male

What is a Mosaic Plot?

- A tool to display relationships among multiple categorical variables

$3 \times 2 \times 2$	Did not survive	Did not survive	Survived	Survived
	Male	Female	Male	Female
$1^{\text {st }}$ class	120	9	59	134
$2^{\text {nd }}$ class	148	13	25	94
$3^{\text {rd }}$ class	440	134	58	79

TOTAL $=1,313$

$1^{\text {st }}=322 \Rightarrow$ MALE $=179 ;$ FEMALE $=143$
$2^{\text {nd }}=280=>$ MALE $=173 ;$ FEMALE $=107$
$3^{\text {rd }}=711=>$ MALE $=498 ;$ FEMALE $=213$

Visualizing $3 \times 2 \times 2$

Mosaic Plot—Check,Your Worksheet
FEMALE
MALE

Mosaic Plot—Example 1

Mosaic Plot—Example 2

Age and operating system share-smartphones
Nov '10 - Jan 11, postpaid mobile subscribers, n=14,701

Regression Output

Variables in the Equation									
		B	S.E.	Wald	df	Sig.	Exp(B)	95\% C.Ifor EXP(B)	
								Lower	Upper
Step $1^{\text {a }}$	sex	2.284	135	287.760	1	. 000	9.812	7.537	12.775
	Constant	-1.607	092	305.300	1	000	201		

a. Variable(s) entered on step 1: sex

Just for reference: $\ln \left(\frac{p}{1-p}\right)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{j} x_{j}+\beta_{q} x_{q}+\varepsilon_{i}$

Odds-How To

Y (XX	female (1)	male (0)
Did not survive (0)	0.51	5.0
Survived (1)	1.97	0.20

$\operatorname{Ln}(y)=-1.607+\left(\right.$ sex $\left.^{*} 2.284\right)$
$\operatorname{Ln}($ odds female survived $)=-1.607+(1$ * 2.284 $)=.677$
Ln (odds male survived) $=-1.607$
Odds female survived $=\operatorname{Exp}(.677)=1.97$
Odds male survived $=\operatorname{Exp}(-1.607)=0.20$
Odds female/Odds male $=1.97 / 0.20=9.85$-> Exp(b)

Probabilities, Odds, and Logits

P_{i}	$1-\mathrm{P}_{\mathrm{i}}$	$\begin{gathered} \text { Odds } \\ P_{i} /\left(1-P_{i}\right) \end{gathered}$	Logit
. 1	. 9	. 111	-2.20
. 2	. 8	. 25	-1.39
. 3	. 7	. 429	-. 847
. 4	. 6	. 667	-. 405
. 5	. 5	1	0
. 6	. 4	1.5	. 405
. 7	. 3	2.33	. 847
. 8	. 2	4	1.39
. 9	. 1	9	2.20

Mosaic Plot with Odds

Major Criticisms

- Too much information in one chart
- Simultaneous manipulation of heights and widths
- Log odds values beyond -2 or 2 can not be visually assessed

Questions

- Pratt Index
- Mosaic plots

Contact Information
Marina Murray mmurray@peacecorps.gov

