

Skill Building Workshop Evaluation 2014, Denver, CO

After **Multiple linear regression** Figure 1. Blood Pressure Drivers 100% 10% 90% 90% 80% 80% 21% 70% 701 60% 60% 50% 50% 99% 40% 40% 30% 68% 30% 20% 20% 10% 10% 0% 1st class 2nd class This chart presents Pratt Index scores that express multiple linear This chart presents trait mode scores that express mulpile initial regression coefficients, where the dependent variable is blood pressure, and three independent variables, as a percentage of total variance explained by the model (standardized equation; $y = .71x_1 + .323x_2 + .116x_3$; R²=.99, all coefficients are statistically significant, a < 0.01).

Binary logistic regression

Figure 2. Passenger Class as Survival Driver

This chart presents conditional probabilities and odds that express This chart presents conditional probabilities and odds that express binary logistic regression coefficients, where the dependent variable is survival, the model equation: $ln(y) = -1.071 + 1.557x_1 + .787_2$; Correct predictions: 68%. Omnibus test of model coefficients: $y^2=127.8$, all coefficients are statistically significant, ar < 0.01. -2.00 [i.kelihood = 1,613; Cox & Snell R² = .093; Nagelkerke R² = .126.

Q	Blood	Pres.	sure (Data.	set			
	A	В	С	D	E	F	G	Ĥ
1	Pt	BP	Age	Weight	BSA	Dur	Pulse	Stress
2	1	105	47	85.4	1.75	5.1	63	33
3	2	115	49	94.2	2.10	3.8	70	14
4	3	116	49	95.3	1.98	8.2	72	
5	4		50	94.7	2.01	5.8	73	
6	5	112	51	89.4	1.89	7.0	72	95
7	6	121	48	99.5	2.25	9.3	71	10
8	7	121	49	99.8	2.25	2.5	69	42
9	8	110	47	90.9	1.90	6.2	66	8
10	9	110	49	89.2	1.83	7.1	69	62
11	10	114	48	92.7	2.07	5.6	64	35
12	11	114	47	94.4	2.07	5.3	74	2
13	12	115	49	94.1	1.98	5.6	71	21
14	13	114	50	91.6	2.05	10.2	68	47
15	14	106	45	87.1	1.92	5.6	67	80
16	15	125	52	101.3	2.19	10.0	76	
17	16	114	46	94.5	1.98	7.4	69	95
18	17	106	46	87.0	1.87	3.6	62	18
19	18	113	46	94.5	1.90	4.3	70	12
20	19	110	48	90.5	1.88	9.0	71	99
21	20	122	56	95.7	2.09	7.0	75	99

			Model Su	ummary					ANOVA ^b			
- E	Model	R	R Square A	diusted R Square	itd. Error of the Estimate	Model		Sum of S		Mean Square	F	Sig.
	1	.9974	.995	.994	.437		egression esidual		56.944 3 3.056 16		971.934	.000 °
	a. Predicto Weight We	ors: (Const	ant), BSA Body	Surface Area, Age Age	in years,		otal		60.000 11			
				Unstandardize	d Coefficients	Coefficients ^a Standardize Coefficient				0	orrelations	
vlodel				B	Std. Error	Beta	-	t	Siq.	Zero-order	Partial	Part
1	(Const	ant)		-13.667	2.647			-5.164	.000			
	Age Ag			.702	.044	.3		15.961	.000	.659	970 /	.29
	Weight	-		.906	.049	.7		18.490	.000	.950	.977	.34
		,	face Area	4.627	1.521	.1	16	3.042	.008	.866	.605	.05
a. L	Jependen	it Variat	ole: BP Bloc	od Pressure		Correlations						
		Γ				BP Blood Pressure	Age Ag	ge, in vrc	Weight Weight, in kg	BSA Body Surface Are	a	
		BF	P Blood Pres	sure Pears	on Correlation	1	$\boldsymbol{<}$.659**	.950**	.866	**	
					-tailed)			.002	.000	.00		
				N		20		20	20	1 2	20	

	Varia	able		β	r	β*r	%
Age in	years			0.323	0.659	0.213	21.4%
Weight	t in kg			0.717	0.950	0.681	68.5%
Body S	Surface A	rea (BS	A)	0.116	0.866	0.101	10.1%
SUM						0.995	> 100.0%
			Ma	del Summe	D/		
	Model	B	1	del Summa	-	Std. Error of the Estimate	7
	Model	R .997ª	Mo R Squar	e Adjusted	ry R Square .994		

Pratt Index—Check Your Worksheet

Variable	β	r	β*r	%
Age in years	0.3	0.7	0.2	20%
Weight in kg	0.7	1.0	0.7	70%
Body Surface Area (BSA)	0.1	0.9	0.1	10%
SUM			1.0	100%
70% -				
60% -				
50% -				
40% -				
30% -				
20% - 10% -	20%			
0%			10%	_
Weight (1)	Age (2)	Body s	urface area (3)	16

Assumptions

- 1) Relative importance depends only on the means, variances and correlations of *y*, x_1 , x_2 , ..., x_p , x_p .
- 2) Relative importance is not affected by linear transformations of any variable.
- The relative importance of x₁ to x₂ is as *m* to n => positive β_ir_i!
- 4) The non-singular linear transformation of a subset of $(x_1, ..., x_q)$ into the subset $(x_1, ..., x_q)$ does not affect its importance relative to other variables.
- 5) The addition of a pure noise variable, independent of y and $x_1, ..., x_p$, to a subset of variables does not affect importance of the subset relative to other variables.

19

In this session

- Introduction
- Linear regression
 - Exercise 1: Calculate Pratt Index
- Mosaic plots
 - Exercise 2: Build a simple mosaic plot
- Logistic regression
 - Exercise 3: Build a mosaic plot for a binary model

Lania (1-1		L					
tanic I	Jati	isei	-					
row.names pclass	survived	name	age	embarked home.des	room	ticket	boat	sex
1 1st	1	Allen, Mis	29	Southamp St Louis, N	B-5	24160 L22	2	female
2 1st	0	Allison, M	2	Southamp Montreal,	C26			female
3 1st	0	Allison, M	30	Southamp Montreal,	C26		-135	male
4 1st	0	Allison, M	25	Southamp Montreal,	C26			female
5 1st	1	Allison, M	0.9167	Southamp Montreal,	C22		11	male
6 1st	1	Anderson	47	Southamp New York,	E-12		3	male
7 1st	1	Andrews,	63	Southamp Hudson, N	D-7	13502 L77	10	female
8 1st	0	Andrews,	39	Southamp Belfast, N	A-36			male
9 1st	1	Appleton,	58	Southamp Bayside, C	C-101		2	female
10 1st	0	Artagavey	71	Cherbour Montevid	eo, Urugua	ay	-22	male
11 1st	0	Astor, Col	47	Cherbour _{ New York,	, NY	17754 L224	-124	male
12 1st	1	Astor, Mrs	19	Cherbourg New York,	, NY	17754 L224	4	female
13 1st	1	Aubert, M	NA	Cherbourg Paris, Fran	B-35	17477 L69	9	female
14 1st	1	Barkworth	NA	Southamp Hessle, Yo	A-23		В	male
15 1st	0	Baumann,	NA	Southamp New York,	, NY			male
16 1st	1	Baxter, M	50	Cherbour Montreal,	B-58/60		6	female
17 1st	0	Baxter, M	24	Cherbour Montreal,	B-58/60			male
18 1st	0	Beattie, N	36	Cherbour _{ Winnipeg	C-6			male
19 1st		Beckwith,		Southamp New York,	D-35		5	male
20 1st	1	Beckwith,	47	Southamp New York,	D-35		5	female
21 1st	1	Behr, Mr H	26	Cherbour New York,	, C-148		5	male
1310 3rd	0	Zakarian,	NA					male
1311 3rd	0	Zenn, Mr	NA					male
1312 3rd	0	Zievens, F	NA					female
1313 3rd	0	Zimmerm	NA					male

23

What is a Mosaic Plot?

A tool to display relationships among multiple categorical variables

3 x 2 x 2	Did not survive	Did not survive	Survived	Survived
	Male	Female	Male	Female
1 st class	120	9	59	134
2 nd class	148	13	25	94
3 rd class	440	134	58	79
2 nd = 280 => N	3 //ALE = 179; FEMALE : //ALE = 173; FEMALE = //ALE = 498; FEMALE =	= 107		

<section-header><section-header><section-header><section-header><figure>

Step 1	-2 Log likelihood	Cox & Snell R		_			Class	ification Table ^a		
1		Square	Nagelkerke R Square						Predicted	k
	1358.722ª	.221	.306	i .				su	vived	Percentage
	imation terminate ise parameter es					Observed		0	1	Correct
.001.			,		Step 1	survived	0	708	156	81.
						Overall Pe		142	307	77.
			۱	/ariable:	s in th	e Equation	n			
		I		/ariable:	s in th	e Equatio	n		95% C.I.f	or EXP(B)
		в	S.E.	/ariable: Wald		e Equatio df	n Sig.	Exp(B)	95% C.I.fi Lower	or EXP(B) Upper
Step 1ª	sex	В 2.284			1			Exp(B) 9.812		· · · ·

	Y\X	female (1)	male (0)	
Did not surv	vive (0)	0.51	5.0	
Survived (1))	1.97	0.20	
Ln (odds fer	607 + (sex * 2.284) male survived) = -1 ale survived) = -1.6	.607 + (1 * 2.284) = .677	
Ln (odds fer Ln (odds ma Odds femal	male survived) = -1	1.607 + (1 * 2.284 607 677) = 1.97) = .677	

P _i	1 - P _i	Odds P _i /(1 - P _i)	Logit	
.1	.9	.111	-2.20	Stronger associatio
.2	.8	.25	-1.39	
.3	.7	.429	847	
.4	.6	.667	405	Weaker association
.5	.5	1	0	Independence
.6	.4	1.5	.405	Weaker association
.7	.3	2.33	.847	
.8	.2	4	1.39	
.9	.1	9	2.20	Stronger associatio

