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• Directional measurement errors:
– every measurement changes 

by the same amount - the 
distribution shifts

– changes the position (mean) 
but not the width (SD)

• Examples in children’s 
anthropometry:
– children wear bulkier 

clothes in colder 
climates

– measuring device 
systematically flawed

– all birth records 
under-estimated

arbitrary

• Non-directional (or, random) 
measurement errors:
– any given measurement may 

be incorrect, but there is no 
net effect

– increases the width (SD) of 
the distribution but not the 
position (mean)

arbitrary

• Examples in children’s 
anthropometry:
– squirming children 
– transcription 

errors
– all birth records 

equally under- and 
over-estimated

Any distribution’s standard deviation (SD) value is strongly 
influenced by measurement data quality.

(of course, genuinely heterogeneous distributions can also lead to large SDs!)

• Assuming normality, apart from a distribution’s SD (see Box C), the prevalence for 
stunting also depends on the distributions mean value (and nothing else!). 
– this is true for any indicator defined by the proportion of observations above or 

below a certain threshold

• To explore this 
three-dimensional relationship, 
high-statistics normal 
distributions were simulated 
with a variety of mean and SD 
values.  For each of these 
distributions, the prevalence of 
observations below -2 (à la 
stunting) were calculated and 
presented to the right as a 
function of mean and SD value.

• So what can we do with this 
information?  Fortunately, there 
is guidance in the literature: the 
vast majority of anthropometric 
z-score distributions known to 
have rigorous data quality controls 
have SD values between 0.8 - 1.2.  
Therefore, anthropometric 
z-score distributions with SD 
values significantly above 1.2 
are likely significantly 
influenced by non-directional 
measurement error.

• Overlaid on this same graph ( ) is the 
height-for-age distribution values for 21 
USAID-supported survey height-for-age 
distributions (see Box D).  The bias for 
many are within a few-%, while the 
bias for some exceed 10%! 

• Height-for-age data quality review: as stunting prevalence relies only on measurements 
of children’s height and age, a DQ review of the input distributions showed the following:
– no significant digit preference found in the height distributions
– height-for-age z score distributions sufficiently normal 
– however, strong and consistent peaks in the age distribution at integer-year ages:

Six age distributions with strong age heaping
24 months

36 months

48 months

• To explore whether these age features are meaningfully related to height-for-age z score SD 
values, an ‘age heaping ratio’ quantity was created, defined by the frequency found in the nine 
months closest to 2, 3, and 4 years (24±1, 36±1, and 48±1 months) divided by the total
– note that, for a completely age homogeneous distribution, this ratio would be 9/60=15%
– see Box D for results!

• These features are likely the result of age measurement error.  As described in 
Box A, non-directional measurement error can result in an inflated SD value.  Boxes C and 
E demonstrate that an inflated SD can result in significant prevalence biases. 

• Included in this meta-analysis are the height-for-age distributions measured in 21 
population-based surveys related to USAID-supported resilience activities collected 
within the past 10 years.  Inclusion criteria was defined prior to any analysis.

• In these datasets, a strikingly strong correlation (⍴=0.90, p-value ≪ 0.01) was found between 
the ‘age heaping fraction’ variable (defined in Box F) and the output height-for-age z score SD.  
Important implications include:
– age heaping is a driving factor in the height-for-age data quality in these survey.
– the SD values in this dataset are inflated due to measurement error.   As demonstrated in 

Box C, this can lead to overestimating the true stunting prevalence.
– as simulated results show in Box E, this bias can exceed 10 percentage points for 

some surveys in this set!  Improved stunting results could be attained by 
correcting the historical results by these amounts.

• Study limitations:

– the corrections simulated in Box E 
do not address of directional error, 
which can also influence prevalence 
rates.

– the corrections simulated in Box E 
assume the SD value should be 1.0 
in the absence of non-directional 
measurement error (a range of 
values between 0.8 and 1.2 is 
reasonable).

• So, assuming the SD should have been close 
to 1.0 in the absence of random 
measurement error, we can calculate the 
prevalence bias caused by these data 
quality issues (graph above).  

• Accurate nutritional monitoring for the world’s youngest citizens is a critical tool in 
evaluating past, present, and future health trajectories in vulnerable communities
– nutrition-based indicators must be able to be collected accurately and efficiently 

in the context of large-scale surveys 

• Height-for-age measurements are among the highest-level childhood nutrition 
indicators supported by Feed The Future and plays a key role in the UN’s 
Sustainable Development Goals.

• Typically, height-for-age results are distilled into a single quantity: the prevalence of 
stunting.  This indicator is defined by the proportion of observations falling 2 or more 
SDs below a healthy reference population (see Box C).

• This work presents simulations and a 
meta-analysis that demonstrates how a 
particular measurement error type (see 
Box F) has led to significant historical 
biases for this stunting indicator.

• As discussed in Box A, non-directional measurement error leads to an increase in 
distributional SD values.

• For the many indicators that track distributional mean values, SD increases do not 
influence the result.

• However, the definition of the stunting indicator involves the proportion of 
observations falling two or more SDs below the healthy reference population. This 
box demonstrates how an inflated SD can lead to a bias in the prevalence 
of stunting.   

• The figures on the right show the results 
of a simple simulation.

• In (a), a distribution with no 
measurement error was simulated.  All 
observations are therefore correctly 
classified
– note the proportion falling below -2 

is 16%

• To create the distributions in (b), 
non-directional measurement error was 
added to each observation in figure (a).  
Note the SD value has increased.  
These measurement errors have 
introduced the mis-classification 
categories of false positives and false 
negatives. 

• Note the false positives clearly 
outnumber the false negatives, leading 
to an overall shift in the overall 
prevalence rate (now at 24%)

• This simple simulation shows how a realistic increase in SD due to 
non-directional measurement error can lead to a significant bias in 
overall stunting rates (in this case, 8 percentage points!).

• Box E explores the relationship between bias, SD, and mean value in more detail
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• The simulations and meta analysis presented here have demonstrated that, due to 
age-related measurement errors (see Boxes F and D), the calculated stunting 
prevalence rates from the surveys considered are likely significantly 
overestimated (see Box E).  This challenge, at some level, must be present in 
other datasets as well.  

• The areas of these resilience activities are, by design, challenged.  Imperfections in 
local administrative systems such as birth records should be expected.  To recognize 
these challenges in the future, a thorough report of the strength of local birth 
record knowledge and practices should accompany any survey report that 
relies on their accuracy to calculate high-level outcomes such as stunting 
rates.

• Other potential improvement prospects include:

– include the age distribution and SD value in 
routine DQ assessments and publish this 
information in the survey report

– when stunting results are clearly influenced by 
measurement error, consider improving the 
point-estimate via a method such as in Box E
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