Estimating Rater
 Consistency: Which Method Is Appropriate?

Robert L. Johnson
Grant Morgan
Min Zhu
Vasanthi Rao

University of South Carolina

Methods for Examining Rater Consistency

Percent agreement (Andrade, Du, \& Wang, 2008; Herman, Gearhart, \& Baker, 1993; Johnson, McDaniel, \& Willeke, 2000; Johnson, Penny, \& Gordon, 2001; Koretz, Stecher, Klein, \& McCaffrey, 1994; LeMahieu, Gitomer, \& Eresh, 1995)

Pearson correlation (Herman, Gearhart, \& Baker, 1993)
Spearman correlation (Johnson, McDaniel, \& Willeke, 2000; Johnson, Penny, \& Gordon, 2001; Koretz, Stecher, Klein, \& McCaffrey, 1994; Supovitz, MacGowan, \& Slattery, 1997)

Cronbach's alpha (van der Schaaf, Stokking, \& Verloop, 2005)
Generalizability/dependability coefficient Johnson, McDaniel, \& Willeke, 2000; Johnson, Penny, \& Gordon, 2001; Nie, Yeo, \& Lau, 2007; Shavelson, Solano-Flores, \& Ruiz-Primo, 1998; Yao, Thomas, Nickens, Downing, Burkett, \& Lamson, 2008)

Questions

- Do we arrive at different conclusions when we use different methods of estimating interrater consistency?
- If so, which method results in a better estimate of interrater reliability?

The Relation between Agreement Levels and Correlation Estimates of Interrater Reliability

Scale	Agreement	Correlation between raters										
	Exact Exact \& Adjacent	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.95
4		Percent agreement between ratings						ssing a 4 and 6-poi			trubric	78
		28	30	33	35	37	40	45	50	5	68	
		73	77	80	83	85	89	92	95	d	100	100
	Exact	26	28	30	32	34	35	40	46	5.	64	75
6	Exact \& Adjacent	69	74	77	79	82	87	90	94	94	100	100

Jolinsen R., Penny, J., \& Gordon, B. (2009). Assessing performance: Developing, scoring, and validating inarmance tasks. New York: Guilford Publications.

- Empirical examination of interrater reliability estimates across methods - Min Zhu

 Monte Carlo simulation of interrater reliabilityestimates across methods - Grant Morgan

References

Andrade, H., Du, Y., \& Wang, X. (2008). Putting rubrics to the test: The effect of a model, criteria generation, and rubric-referenced self-assessment on elementary school students' writing. Educational Measurement: Issues and Practice, 27(2), 3-13.
Herman, J., Gearhart, M. \& Baker, E. (1993). Assessing writing portfolios: Issues in the validity and meaning of scores. Educational Assessment, l(3),201-224.
Johnson, R., McDaniel, F., \& Willeke, M. (2000). Using portfolios in program evaluation: An investigation of interrater reliability. The American Journal of Evaluation, 21(1), 65-80.
Johnson, R., Penny, J., \& Gordon, B. (2001). Score resolution and the interrater reliability of holistic scores in rating essays. Written Communication, 18(2), 229-249.
Johnson, R., Penny, J., \& Gordon, B. (2009). Assessing performance: Developing, scoring, and validating performance tasks. New York: Guilford Publications.
Koretz, D., Stecher, B., Klein, S., \& McCaffrey, D. (1994). The Vermont portfolio assessment program: Findings and implications. Educational Measurement: Issues and Practice, 13(3), 5-16.
LeMahieu, P., Gitomer, D., \& Eresh, J. (1995). Portfolios in large-scale assessment: Difficult but not impossible. Educational Measurement: Issues and Practice, 14(3), 11-16, 25-28.
Nie, Y., Yeo, S., \& Lau, S. (2007). Application of generalizability theory in the investigation of the quality of journal writing in mathematics. Studies in Educational Evaluation 33, 371-383.
Shavelson, R., Solano-Flores, G., \& Ruiz-Primo, M. (1998). Toward a science performance assessment technology. Evaluation and program planning, 21(2), p. 171-184.
Supovitz, J., MacGowan, A., \& Slattery, J. (1997). Assessing agreement: An examination of the interrater reliability of portfolio assessment in Rochester, New York. Educational Assessment, 4(3), 237-259.
Van der Schaaf, M., Stokking, K., \& Verloop, N. (2005). Cognitive representations in raters' assessment of teacher portfolios. Studies in Educational Evaluation 31, 27-55.
Yao, Y., Thomas, M., Nickens, N., Downing, J., Burkett, R., \& Lamson, S. (2008). Validity evidence of an electronic portfolio for preservice teachers. Educational Measurement: Issues and Practice, 27(1), 10-24,

Estimating Rater Consistency: How Do Methods Differ?

Min Zhu, Robert Johnson, Grant Morgan, \& Vasanthi Rao
University of South Carolina
Department of Educational Studies

2010 AEA Presentation, San Antonio, Texas

SCAAP Overview

- The South Carolina Arts Assessment Program (SCAAP) was established by the SC Department of Education in 2000.
- Purpose: to provide arts educators and school administrators with a tool to measure their students' arts achievement and to objectively evaluate their schools' arts programs.
- Uniqueness: a web-based standardized arts assessment system
- Include 6 assessments
- Each assessment includes:
- Two 45-item multiple-choice test forms
- Two/three performance tasks
- Test developers -
- South Carolina arts educators
- Measurement specialists at the Office of Program Evaluation (OPE) at the University of South Carolina

Data Source

- 2007 SCAAP entry-level visual arts performance assessment results
- Two tasks: one writing and one drawing
- 8 raters and 4 paired-rater groups
- 500 students in each group

SCAAP Visual Arts Task 1 -- Compare and Contrast
 Visual Arts Performanee Task 1

Task 1:
Today. you will compare and contrast Plcture A and Plicture B. Use at leest four of the art terms from WORD BANK 1 to EXPLAN how the two pictures are similar and how Hey are different. .

When you explain the simiarities and differencas, make sure to point out specificthings in the pidures and remember to witte down, anch time, If you are twiking soout Picture A or if you are talking about Picture B.
REMEMBer: You muet use at least four ar iems and you must wries about both pictures.

- Picture B is abstract because it is not real
- picture B has a background
- picture B does not use texture

- Picture A use color on his shirt
- picture a has more details
- Picture A and picture B both have to do
- Picture A uses patterns on his clothes

SCAAP Visual Arts Task 2 -- Drawing and Self-Critique
 Teak 2a:

Thak 2B:

When you write about your drawing. make sure to point out spesifife things in your drawing and exclain why you tinink thess things are good ax why live need mprovement.
remember you muat use at lesst four on tiems and you must be specific
All of the things (tree, elouds, bush, sun)
in the back are in the backround because the bigger stuff (cheetah, stump, berrybushes) are in the foreground, the anthill is in the middle ground. Al the patterns like the spots on the cheotah,bark on the tree and stump
look likey when you touch them they could, feel like the peal on the groung, the way I drew the top on if could make it look $3-D$.
Also the see the way the treebranch Alss the see the way the treebranch
lines overlap the bee hives lines.
I put in a lot of detail like the behive, the bindnest, bercies,grass, stump,and

SCAAP Web-Based Rating System

- Raters: Trained arts professionals
- Rubrics:
- Holistic rubrics for visual arts
- Scale ranges from 0 to 4 with raters also being allowed to use augmentation (e.g. 2-, 2, 2+).
- Benchmarking:
- Validation Committee members select student responses representative of each rubric level and use these as:
- anchor responses
- practice responses
- qualifying responses
- seed responses

SCAAP Web-Based Rating System (Cont')

- Rater Training
o One-day training session at a central location
o Anchor items are presented and explained.
o Raters take a web-based practice test that provides detailed feedback.
o Each rater is required to score at least 90\% adjacent agreement on a 15 -item, randomly generated qualifying test.
o After passing the qualifying test, raters can score student responses.
o Following the training, raters score student responses remotely via the SCAAP website https://scaap.ed.sc.edu.

SCAAP Web-Based Rating System (Cont')

- Scoring \& Monitoring

- Raters are required to pass a randomly-generated 15-item refresher test after scoring every 100 student responses.
- Seed responses are randomly distributed among unscored student performances to monitor rater accuracy.
- Each student response is scored by two-raters. An expert rater is used for score resolution.

Rater Consistency Estimates

 in the Literature| Methods | 1990s | 2000s |
| :--- | :---: | :---: |
| Percent Agreement | | |
| Exact | $/$ | 2 |
| Adjacent | 1 | 5 |
| Kappa coefficient | 2 | 1 |
| Pearson product moment correlation
 coefficient (PPMCC) | 1 | 3 |
| Spearman rank-order | $/$ | $/$ |
| Cronbach's alpha | $/$ | $/$ |
| Intraclass correlation (ICC) | 1 | 4 |
| G-theory | $/$ | 2 |
| G-coefficient | 2 | 1 |
| Phi-coefficient | 1 | 3 |
| Multifaceted Rasch model (MFRM) | | 1 |
| Others | | |

Measures of Rater Agreement

- Percent Exact Agreement
- Percent Adjacent Agreement
- Advantage
- Distribution-free estimate
- Easy to compute
- Disadvantage
- The small range of the scale in rubrics can inflate the estimate.
- Chance agreement is not considered.

Sample: Percent Agreement

 --Exact and Adjacent| R1 | R2 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 2 | 3 | 4 | Total |
| 0 | 22 (4.41\%) | 19 (3.81\%) | 100 (20.04\%) | 7 (1.4\%) | 0 (0\%) | 148 (29.66\%) |
| 1 | 1 (0.2\%) | 4 (0.8\%) | 101 (20.24\%) | 13 (2.61\%) | 4 (0.8\%) | 123 (24.65\%) |
| 2 | 0 (0\%) | 2 (0.4\%) | 71 (14.23\%) | 38 (7.62\%) | 4 (0.8\%) | 115 (23.05\%) |
| 3 | 0 (0\%) | 0 (0\%) | 17 (3.41\%) | 26 (5.21\%) | 14 (2.81\%) | 57 (11.42\%) |
| 4 | 0 (0\%) | 1 (0.2\%) | 4 (0.8\%) | 18 (3.61\%) | 33 (6.61\%) | 56 (11.22\%) |
| Total | 23 | 26 | 293 | 102 | 55 | 499 |

- Note: Exact agreement 31.26\%;

Adjacent agreement 73.34\%

Measures of Association

- Pearson product-moment correlation coefficient (PPMCC)
- Spearman's rank-order correlation coefficient (SRCC)
- Polychoric correlation coefficient (PCC)

Measures of Association (Cont')

	Applications	Assumptions
PPMCC	Association between two continuous variables	\checkmark Bivariate normality \checkmark No measurement error
Spearman Rank- order	Association between two ordinal variables	\checkmark Shape identity \checkmark No measurement error
Polychoric	Association between two continuous latent variables grouped into ordered classes	\checkmark Latent bivariate normality No measurement error

G-coefficient and Phi-coefficient

- G-coefficient

- When the ranking of individual or group scores is the focus
- In a G-study with raters as a facet

$$
\rho^{2}=\frac{\sigma^{2}(p)}{\sigma^{2}(p)+\sigma^{2}(p r)}
$$

- Phi-coefficient (index of dependability)
- When examinees performance on a criterion-referenced test is of interest
- With raters as the only facet, the phi-coefficient takes into account shifts in rater means and allows detection of raters who are overly severe or lenient.

$$
\phi=\frac{\sigma^{2}(p)}{\sigma^{2}(p)+\sigma^{2}(r)+\sigma^{2}(p r)}
$$

Questions to Answer

- How different are these interrater consistency estimates?
- How does the range of the rating scale (i.e. with and without augmentation) impact the difference among these interrater consistency estimates?
- How does the pattern differ across performance tasks?

SCAAP Visual Arts Task 1 Consistency --Without Augmentation in Rating

Raters	N	R1		R2		Exact (\%)	Adj (\%)	PPMCC	SRCC	PCC	G-C	Phi-C
		Mean	SD	Mean	SD							
G1	499	1.50	1.32	2.28	0.90	31.26	73.34	0.66	0.65	0.76	0.61	0.57
G2	491	1.71	1.24	1.70	1.08	53.56	92.06	0.74	0.72	0.82	0.73	0.73
G3	496	1.26	1.26	1.77	0.88	40.52	84.07	0.70	0.70	0.86	0.66	0.64
G4	496	1.99	0.95	1.33	1.19	40.52	80.24	0.68	0.64	0.78	0.66	0.63

- Note: Exact - Exact agreement

Adj-Adjacent agreement
PPMCC - Pearson product-moment correlation coefficient
SRCC - Spearman's rank-order correlation coefficient
PCC - Polychoric correlation coefficient
G-C - G-coefficient
Phi-C - Phi-coefficient

SCAAP Visual Arts Task 1 Consistency --With Augmentation in Rating

Raters	N	R1		R2		Exact(\%)	Adj(\%)	PPMCC	SRCC	PCC	G-C	Phi-C
		Mean	SD	Mean	SD							
G1	499	1.48	1.31	2.31	0.90	14.03	27.46	0.68	0.68	0.75	0.63	0.59
G2	491	1.72	1.24	1.71	1.08	47.45	53.56	0.74	0.73	0.82	0.74	0.74
G3	496	1.28	1.27	1.75	0.89	33.47	40.32	0.73	0.75	0.86	0.68	0.67
G4	496	1.98	0.95	1.33	1.18	32.46	40.32	0.69	0.66	0.78	0.68	0.65

- Note: Exact - Exact agreement

Adj - Adjacent agreement
PPMCC - Pearson product-moment correlation coefficient
SRCC - Spearman rank-order correlation coefficient
PCC - Polychoric correlation coefficient
G-C - G-coefficient
Phi-C - Phi-coefficient

SCAAP Visual Arts Task 2A Consistency --Without Augmentation in Rating

Raters	N	R1		R2		Exact						
		Mdj	(\%)	PPMCC	SRCC	PCC	G-C	Phi-C				
G1	495	2.02	0.68	2.20	1.02	49.29	94.95	0.63	0.62	0.75	0.58	0.57
G2	489	1.65	0.83	1.78	0.69	59.71	98.97	0.65	0.65	0.75	0.64	0.63
G3	491	1.90	0.78	1.96	0.83	58.04	98.16	0.63	0.62	0.72	0.63	0.63
G4	493	1.58	0.80	2.10	0.82	36.92	93.71	0.58	0.56	0.66	0.58	0.55

- Note: Exact - Exact agreement

Adj- Adjacent agreement
PPMCC - Pearson product-moment correlation coefficient
SRCC - Spearman's rank-order correlation coefficient
PCC - Polychoric correlation coefficient
G-C - G-coefficient
Phi-C - Phi-coefficient

SCAAP Visual Arts Task 2A Consistency --With Augmentation in Rating

Raters	N	R1		R2		Exact (\%)	Adj (\%)	PPMCC	SRCC	PCC	G-C	Phi-C
		Mean	SD	Mean	SD							
G1	495	1.99	0.68	2.22	1.01	27.88	47.07	0.67	0.66	0.71	0.63	0.59
G2	489	1.65	0.83	1.78	0.69	52.56	59.72	0.67	0.67	0.75	0.74	0.74
G3	491	1.88	0.76	1.94	0.79	30.75	56.62	0.70	0.68	0.74	0.68	0.67
G4	493	1.58	0.78	2.09	0.81	26.17	36.52	0.63	0.62	0.69	0.68	0.65

- Note: Exact - Exact agreement

Adj - Adjacent agreement
PPMCC - Pearson product-moment correlation coefficient
SRCC - Spearman's rank-order correlation coefficient
PCC - Polychoric correlation coefficient
G-C - G-coefficient
Phi-C - Phi-coefficient

Task 1

Without Augmentation

Task 2A
Without Augmentation

With Augmentation

Findings

- Consistent with previous studies, introducing augmentation scores does not result in large changes in mean scores, but increases some of the interrater reliability coefficient estimates (excluding polychoric correlation).
- As expected, phi-coefficients are slightly lower than Gcoefficients in some instances, indicating the potential existence of a small rater effect.
- Polychoric correlations are always higher than other reliability estimates.
- In many cases, PPMCC, Spearman, and G-coefficients were very close.
- Such a pattern is quite consistent across the two tasks.

What's Next...

- Which reliability coefficient is closer to the truth?
- What should we consider when choosing a coefficient in our report?
- A simulation study will tell us more.

Which Measure Is Appropriate for Estimating Rater Consistency? A Simulation Study

Grant Morgan
Robert Johnson
Min Zhu
Vasanthi Rao
University of South Carolina

Presentation Overview

- Select estimates of rater consistency
- What does "appropriate" mean?
- Ease of communication
- Estimates \& data alignment
- Accuracy of inferences
- Conclusions

Rater Consistency Estimates

	Applications	Assumptions
Pearson Product- Moment	Association between two continuous variables	\checkmark Bivariate normality \checkmark No measurement error
Spearman	Association between two ordinal variables	\checkmark Shape identity \checkmark No measurement error
Polychoric	Association between two continuous latent variables grouped into ordered classes	\checkmark Latent bivariate normality \checkmark No measurement error
G-coefficient	Partition systematic and unsystematic error variation	\checkmark Randomly parallel tests sampled from the same population (i.e., universe)

Which measure is "appropriate"?

1) Ease of communication

- Pearson product-moment correlation coefficient
- Proportion of explained variance when squared
"Pearson's product-moment correlation is the most commonly reported, even for those data for which it is superficially not a good match. Of course, the same is true of other familiar statistics, such as the mean and standard deviation" (Linacre, 2005, p.1028).

Which measure is "appropriate"?

1) Ease of communication

- Pearson product-moment correlation coefficient

2) Alignment between analysis and data

- Polychoric correlation coefficient
- Recall: Correlation between two latent continuous distributions that have been chunked into ordinal scales

Performance Assessment Data

- Features:
- Ability is a normally-distributed latent variable
- Ability distribution is chunked into an ordinal scale (rubric rating scale)

Previous Research

Problems with treating ordinal data as continuous

- No origins or units of measure (Joreskog, 1994)
- Increased likelihood of correlating error variances (Anderson \& Gerbing, 1988)
- Standard error \& chi-square tests are incorrect when using product-moment matrix with ordinal data (Bentler \& Lee, 1983).

Design Factors

- Levels of inter-rater reliability
- .70, .75, .80, .85, .90, . 95
- Number of tasks
- 25, 100, 250, 500, 2000
- Number of rating scale categories
- 4, 6, 4 with augmentation (12), 6 with augmentation (18)
- 1,000 replications of each condition

Distributions

Estimated Bias

-Let simulated value of IRR $=\rho$

- $E(\rho$-hat $)=\rho+\Delta$, where $\Delta=$ bias
-We're interested in Δ !

Estimated Bias by Number of Scale Categories

Estimated Bias by Number of Papers

Estimated Bias by Reliability Parameter

Estimated Bias by Reliability Parameter

Accuracy of Estimates

Estimate	Mean	SD	Median	Min	Max
Pearson	-.04	.05	-.03	-.63	.22
Spearman	-.05	.06	-.05	-.77	.22
Polychoric	.00	.05	.00	-.71	.30
G-Coeff.	-.04	.05	-.04	-.64	.22

On average, all estimates were very close to the simulated parameter

Which measure is "appropriate"?

1) Ease of communication

- Pearson product-moment correlation coefficient

2) Alignment between analysis and data

- Polychoric correlation coefficient

3) Accuracy of estimates

- Polychoric correlation coefficient

Conclusions

- Estimates approach simulated parameter as the number of scale categories increase.
- Range of coefficients decreases only slightly as scale categories increase.
- All coefficients become more precise as numbers of papers increase.

Conclusions

- Pearson tended to underestimate reliability across conditions.
- Spearman tended to underestimate reliability across conditions.
- G-coefficient tended to underestimate reliability across conditions.
- Polychoric tended to overestimate reliability when the number of papers is smaller.

Two Questions Answered

1) Should I use scale augmentation?

When feasible, yes. Scale augmentation provides estimates closer to the parameter although there is not a major benefit for polychoric correlation.
2) How many papers (i.e., ratings) do I need to get good estimate of consistency?
It depends on definition of "good" (i.e., one's desired level of confidence). Increasing the number of ratings increases precision. If one has a limited number of papers, polychoric correlation provides the least biased estimate on average.

NOTE: These answers based on results of this simulation. Generalizations to other conditions are not possible.

To Calculate Reliability Coefficients

- Pearson, Spearman, and Polychoric correlation coefficients
- This study used SAS PROC FREQ with the PLCORR option on the TABLE line.
- Mplus, R, PRELIS, SPSS also provide these estimates.
- G-coefficients \& Phi-coefficients
- This study used SAS PROC GLM (VARCOMP is also available in SAS).
- SPSS, MATLAB
- Specialized software
- GENOVA, EduG

Using SAS PROC FREQ

- Set up data so each rater represents a column

	paper	rating1	rating2
1	1	3	2.67
2	2	3.67	3.67
3	3	3	3
4	4	2.67	2.33
5	5	2.67	3
6	6	3.33	3.33
7	7	3.33	3.33
8	8	3	2.67
9	9	4.67	4.33
10	10	4.33	4.33
11	11	4	4.67
12	12	3	3.67
13	13	3.33	3.33
14	14	4	4
15	15	1.67	2

Using SAS PROC FREQ

\square proc freq data=aeademo:
table ratingl*rating2 / plcorr;
run;

Using SAS PROC FREQ

Using PROC VARCOMP

- Set up data so every rating has its own row and is classified by paper and by rater

	paper	rater	rating
1	1	1	3
2	1	2	2.67
3	2	1	3.67
4	2	2	3.67
5	3	1	3
6	3	2	3
7	4	1	2.67
8	4	2	2.33
9	5	1	2.67
10	5	2	3

Using PROC VARCOMP

-proc varcomp data=aeademo2;
class paper rater;
model rating=paper|rater;
run;

Using PROC VARCOMP

Using PROC VARCOMP

- Using the estimates from previous slide to estimate the G coefficient for one rater:
$G=\frac{\sigma_{p}^{2}}{\sigma_{p}^{2}+\frac{\sigma_{p * r}^{2}}{k}}$

$$
G=\frac{4.95102}{4.95102+\frac{0.43857}{2}}=.958
$$

Future Research

- Need for more conditions
- Examinations of additional estimates
- Examine Winsorized distributions

For more information...

Grant Morgan - morgang@mailbox.sc.edu
Dr. Robert Johnson - rjohnson@mailbox.sc.edu

Min Zhu - zhum@mailbox.sc.edu

Vasanthi Rao - raov@mailbox.sc.edu

References

Anderson, J. C. \& Gerbing, D. W. (1988) Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
Bentler, P.M., \& Lee, S.Y. (1983). Covariance structures under polynomial constraints: Applications to correlation and alpha-type structural models. Journal of Educational Statistics, 8, 207-222.
Joreskog, K. G. (1994) On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59(3), 381-389.
Linacre, J.M. (2005). Correlation coefficients: Describing relationships. Rasch Measurement Transactions, 19(3), 1028-1029.

