
STATISTICS IN MEDICINE
Statist. Med. 2008; 27:2050–2054
Published online 14 April 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.3208

COMMENTARY

The essential role of balance tests in propensity-matched
observational studies: Comments on ‘A critical appraisal of

propensity-score matching in the medical literature between 1996
and 2003’ by Peter Austin, Statistics in Medicine
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Statistics Department, University of Michigan, 439 West Hall, Ann Arbor, MI 48109-1107, U.S.A.

Peter Austin has made an exacting, timely and eye-opening review of uses of propensity-score
matching in medical research. Its Section 2.1 argues that the reports of propensity-matched anal-
yses should include descriptive assessments of matched treatment-control differences on baseline
variables. When propensity matching on covariates including BMI, for example, one should report
the difference between matched cohorts’ mean BMIs, perhaps after inverse scaling by the pooled
s.d. of BMIs prior to matching. The recommendation is a good one: matched differences on prog-
nostic variables, and on variables that track selection into treatment, speak to the credibility of
subsequent matched outcome analyses; and although the basic promise of propensity matching is
that it should lessen such differences, the extent of the reduction varies greatly from case to case.
Furthermore, since successful propensity matches or subclassifications enable comparisons similar
to those which randomization would have given—in terms of observed covariates, at least [1],
and should those covariates jointly suffice to remove confounding, then also in terms of outcomes
[2]—it follows that balance is the basic mark of success of a propensity adjustment.

Austin’s review also makes a negative recommendation: When appraising balance, avoid signif-
icance tests. Having compared means of BMI and other variables, Austin would not have us go
on to calculate either paired/two-sample t-tests or other tests for a treatment-control difference
on BMI. His pessimism about the state of reporting in the medical propensity-matching literature
stems in large part from this opinion; only 2 of 47 papers reported balance properly, Austin reports,
but it turns out that another 33 were disqualified on the basis of having tested balance, rather than
reporting it using purely descriptive measures. This dim view of balance testing is driven by two
complaints, complaints Austin shares with Imai, King and Stuart [3]:
A. Null hypotheses typically refer to populations from which the sample was taken, yet the

matched sample need not represent any background population, and if it does the balance
within that population is not relevant to matched inferences based on the sample.
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B. The sample-size reduction that accompanies matching can reduce the significance of baseline
imbalances even when the imbalances remain the same in absolute terms.

Complaint A applies to some, but not all, balance tests. Among those to which it does not
apply are the permutation tests discussed in this comment and elsewhere [4]. Complaint B is
correct, but less paradoxical than it may seem. Matching aims to ensure the coverage of tests
and confidence intervals for treatment effects. Ordinarily it would do this by reducing bias, but
in those cases where matching reduces baseline imbalances’ statistical significance but not their
magnitudes, it does it by increasing standard errors. In all cases, assessing imbalances in terms
of their statistical significance better promotes coverage than does assessing them in absolute
terms.

Balance tests in observational studies: The use of tests to compare non-randomized treatment
and control groups pre-dates propensity scores, going back at least to Cochran [5, Section 3.1],
who argued that two-sample t-tests and statistics were particularly well suited to decide whether
between-group differences on an x-variable were enough to necessitate adjustments for it. In
Cochran’s analysis, small t-statistics suggest bias small enough that the coverage of confidence
intervals for outcome differences are little affected, whereas large t-statistics open the door to
more damaging biases; this pattern holds irrespective of sample size. The same is true after
propensity matching, against a more general model than Cochran’s, and for balance statistics
the calibration of which does not presuppose sampling from a hypothetical population. Non-
significance of imbalance on a given baseline x suggests of one potential bias in causal effect
estimates that it is too small to effect type I errors, whereas significance of the same imbal-
ance suggests a bias large enough to inflate type I errors. This is so irrespective of sample
size, and the same cannot be said for any measure of balance that is independent of sample
size.

Viewed as significance tests, rather than informal diagnostics, balance assessments are simply
goodness-of-fit tests of a certain kind. Cochran took them to be comparisons of background
populations of treatment and control subjects, but there is another interpretation that better fits
propensity analysis. Let z∈{0,1} indicate assignment to the treatment group, let x1, . . . , xK be
measured covariates, and let y be an outcome measurement. Propensity matching posits that
treatment assignments z are independent draws of random variables Z ∼Bernoulli(�(x1, . . . , xK )),
� an unknown function, grouping the subjects into matched sets on the basis of estimated values
of �. However these values are estimated, and however closely or loosely subjects were matched
on the estimates, outcome analysis proceeds under the model that �si =�s j whenever i, j belong
to a common matched set s. Properly conducted balance tests probe the goodness of this model’s
fit to the data.

Such a model, call it H̃0, is almost sure to be false, at least in detail. Being mindful of
Box’s advice—‘all models are false, but some are useful’ [6, p. 202]—we need not be deterred
by this, only made wary of matches of which H̃0 is so false as to be misleading. Let H̃a
stand for the actual state of affairs in a given observational study, where perhaps �si

.=�s j
but typically �si �=�s j for some, perhaps all, s and i �= j . Our hope is that by working under
H̃0, rather than H̃a, little harm is done to tests of hypotheses about treatment effects. Tests
of matched differences at baseline show us whether the substitution does violence to a test in
which the correct answer is known, since the treatment cannot have affected measurements that
preceded it.
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The remainder of this note adapts Cochran’s argument to the setting of propensity modeling,
which takes assignment to treatment, but not necessarily the generation of outcomes, to be
stochastic.

Balance tests without superpopulation sampling: Assume matching to have produced m non-
overlapping pairs, p=1, . . . ,m. Randomization-based tests of H̃0 based on the mean paired differ-
ence in a baseline variable x , d(z,x)=m−1∑

p(z p1−z p2)(xp1−xp2), have Z as their only random
variable. It is natural to condition on C={(Z p1, Z p2)=(1,0) or (0,1), p=1, . . . ,m}, making
d(Z,x) a sum of known linear transforms of Bernoulli trials. Then the mean difference d(z,x)
is scaled by the square root of its variance under H̃0, which usually differs somewhat from the
estimated variance of d(z,X) under models taking x’s to be drawn from a population; according
to H̃0, it is more nearly N(0,1) than t-distributed. This randomization test can be generalized, first
to multiple-controls matched, full-matched [7, 8] and subclassified data, and then for all of these
designs to the situation where imbalance along any number of x’s is to be tested [4]. These tests
meet Austin’s and Imai et al.’s stipulation that the balance assessment not presuppose sampling
from a superpopulation.

Let v be a variable not affected by treatment assignment. How does d(Z,v)’s distribution under
H̃0 compare with its distribution under H̃a? The answer depends on how closely subjects are
matched on the propensity score and the relationship of v’s to propensity scores, in a manner
with interesting ramifications for causal inference. Write � for the logit-scale propensity score,
i.e. �pi ≡ logit(�pi ). Note that � denotes a true, typically unknown, propensity score, not an
estimate of it. Then Pr(Z p1=1|C) is not �p1={1+exp(−�p1)}−1 but, by the conditioning on C,
{1+exp(�p2−�p1)}−1, from which it follows that

E[d(Z,v)|C] =m−1∑

p
(vp1−vp2) tanh{(�p1−�p2)/2}

V [d(Z,v)|C] =m−2∑

p
(vp1−vp2)

2 sech2{(�p1−�p2)/2}

However, sech(x)�1, with sech(x)=1 iff x=0; and after matching on �̂, the differences {|�p1−
�p2| : p�m} should be small enough to warrant the first-order Taylor approximation tanh(x)

.= x .
With some algebra,

E[d(Z,v)|C] .=s(v,�|C) (1)

and

V [d(Z,v)|C]�2s2(v|C)/m (2)

where s(v,w|C)=m−1∑m
p=1

∑
i=1,2(vpi − v̄p)(wpi −w̄p) and s2(v|C)=s(v,v|C). The bound in

(2) is attained only under H̃0; the true (H̃a) variance is inevitably smaller.
Write E0,V0 for expectation and variance under H̃0 and conditional on C; Ea,Va for the same

conditional expectation and variance under H̃a. In the vicinity of the approximating model, H̃0,
the power of a test of balance on x to reject H̃0 is determined by

Ead(Z,x)−E0d(Z,x)

V 1/2
0 d(Z,x)

.= (0.707)m1/2 s(x,�|C)

s(x|C)
(3)

= (0.707)m1/2rx,�|Cs(�|C) (4)
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where rx,�|C is the partial correlation s(x,�|C)/(s(x|C)s(�|C)) of x and � within matched sets.
The power of the test increases with the number of matched sets, with the magnitude of differences
between matched subjects’ propensity scores, and with the residual correlation of x and the
propensity score.

Distinguishing harmful from harmless failures of H̃0: Randomization tests of hypotheses about
the causal effect also assume H̃0. To test the strict null of no treatment effect on y, one adds to
H̃0 the assumptions that yc= yt = yobs and that there is no hidden bias [9], assessing d(zobs,yobs)
against the H̃0-law of d(Z,yobs). Under these assumptions, (1) and (2) apply to yobs= yc,
so that if

Ead(Z,yc)−E0d(Z,yc)

V 1/2
0 d(Z,yc)

.=(0.707)m1/2ryc,�|Cs(�|C) (5)

is small then the bias of d(Z,yc) will be small—not necessarily in absolute terms, but certainly
relative to its standard error, so that the bias won’t undermine the test for a treatment effect.
In parallel with (4), (5) says that the bias-to-standard-error ratio for effect estimation increases
with sample size, with the magnitude of matched subjects’ differences on �, and with the residual
correlation of yc and the propensity score.

This similarity has several consequences. The first is a justification for balance tests’ dependence
on sample size. The presence of the same m1/2 factor in (4) and (5) shows that if the samples
were randomly reduced, balance tests’ power would indeed diminish, but the decrease would be in
perfect alignment with an improvement in H̃0’s capacity to adequately approximate H̃a. Another
is that it links the prognostic value of a covariate to balance testing and the bias of treatment effect
estimation. Suppose that x correlates with yc: then in (3), the matched correlation of x with � may
approximate that of yc with �; if it is large enough to make (3) large, giving power to the balance
test, then this suggests that (5) is large, perhaps large enough to skew causal inferences. As a
third consequence of the similarity between (4) and (5), suppose that x is notable as a predictor of
treatment assignment: x is a selection covariate. Note that rx,�|Cs(�|C) is bounded in magnitude
by s(�|C), with the bound achieved only when rx,�|C=±1. If the matched correlation of x and �
is high, then (3) approximates (m/2)1/2s(�|C), which is also an upper bound for (5); if the test for
balance on x lacks power, then the bias must be small. In sum, for both prognostic and selection
covariates, balance tests tend to reject when bias due to inexact propensity matching is enough to
undermine causal inferences and tend not to reject when that bias is small enough to be ignored.
Therein lies their value.

ACKNOWLEDGEMENTS

Jake Bowers, Kosuke Imai, Paul Rosenbaum and Jasjeet Sekhon generously commented on drafts of this
note.

REFERENCES

1. Braitman LE, Rosenbaum PR. Rare outcomes, common treatments: analytic strategies using propensity scores.
Annals of Internal Medicine 2002; 137(8):693–695.

2. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects.
Biometrika 1983; 70:41–55.

3. Imai K, King G, Stuart E. Misunderstandings among experimentalists and observationalists: about causal inference.
Journal of the Royal Statistical Society, Series A 2008; 171(Part 2, Forthcoming):1–22.

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:2050–2054



2054 COMMENTARY

4. Hansen BB, Bowers J. Covariate balance in simple, stratified and clustered comparative studies. Statistical Science
2008; 23. To appear.

5. Cochran WG. The planning of observational studies of human populations. Journal of the Royal Statistical Society
1965; 128:234–266.

6. Box GE. Robustness in the strategy of scientific model-building. In Robustness in Statistics, Lauer RL, Wilkinson
GN (eds). Academic Press: New York, 1979; 201–236.

7. Rosenbaum PR. A characterization of optimal designs for observational studies. Journal of the Royal Statistical
Society 1991; 53:597–610.

8. Hansen BB, Klopfer SO. Optimal full matching and related designs via network flows. Journal of Computational
and Graphical Statistics 2006; 15(3):609–627.

9. Rosenbaum PR. Observational Studies (2nd edn). Springer: Berlin, 2002.

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:2050–2054


