When People Move:
Using Cross-Classified and Multiple
Membership Growth Curve
Modeling in Non-Hierarchical
Multilevel Data Structures

Bess A. Rose
AEA Conference: Evaluation 2013
Demonstration Session 548
October 18, 2013

JOHNS HOPKIN

Mobility

- Evaluations often look at change over time
- Family, employee, and student mobility is the norm in the U.S. today
- So how do you analyze data?

BACKGROUND Terms and Definitions

Multilevel Data

- Units "nested" within units
- Examples:
 - Students in classrooms
 - Employees in job sites
 - Measurement occasions in students in schools
- Outcomes within groups are likely correlated, so use multilevel modeling, not regression

Unconditional HLM Growth Models

The reading score at time *t* for student *i* who attended school *j*:

At Level 1 (measurement time):

Year has to start at 0

 $Rdg_{tij} = \pi_{0ij} + \pi_{1ij}Yr_{tij} + e_{tij}$

Intercept Slope (Starting Point) (Annual Growth)

JOHNS HOPKIN

Unconditional HLM Growth Models

The reading score at time *t* for student *i* who attended school *j*:

At Level 2 (student):

Intercept: $\pi_{0ij} = \beta_{00j} + r_{0ij}$

Slope: $\pi_{1ij} = \beta_{10j} + r_{1ij}$

JOHNS HOPKIN

Unconditional HLM Growth Models

The reading score at time t for student i who attended school *j*:

At Level 3 (school):

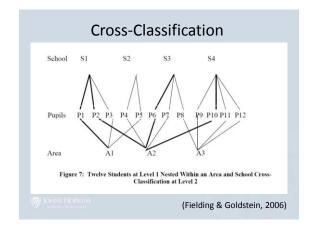
Intercept:

$$\beta_{00j} = \gamma_{000} + u_{00j}$$

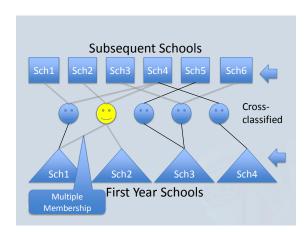
Slope:

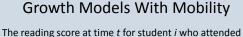
$$\beta_{10i} = \gamma_{100} + u_{10i}$$

- Usually multilevel = hierarchical
- Each unit belongs to one (and only one) higher-level unit
- When this isn't true, we have nonhierarchical multilevel data



Cross-Classification


- · Lower-level units belong to more than 1 higher-level *classification*
- Examples:
 - Students may attend the same school but live in different neighborhoods (e.g., Scotland Neighbourhood Study, Garner & Raudenbush, 1991)



Multiple Membership

- · Lower-level units belong to more than 1 higher-level unit within the same classification
- Examples:
 - Patients served by multiple nurses
 - Doctors practicing in multiple hospitals
 - Students taking multiple classes
 - Students attending more than one high school

(the set of) school(s) j_1 in the first year and (the set of) school(s) j_2 in subsequent years:

At Level 1 (measurement time):

at 0

 $Rdg_{ii(\{j_1\},\{j_2\})} = \pi_{0i(\{j_1\},\{j_2\})} + \pi_{1i(\{j_1\},\{j_2\})} Yr_{ii(\{j_1\},\{j_2\})} + e_{ii(\{j_1\},\{j_2\})}$

Intercept (Starting Point)

rting Point) (Annual Growth)

(Adapted from Grady & Beretvas, 2010, pp. 405-407)

Slope

Growth Models With Mobility

The reading score at time t for student i who attended (the set of) school(s) j_1 in the first year and (the set of) school(s) j_2 in subsequent years:

At Level 2 (student):

Intercept: $\pi_{0i(\{j_1\},\{j_2\})} = \beta_{00(\{j_1\},\{j_2\})} + r_{0i(\{j_1\},\{j_2\})}$

Slope: $\pi_{1i(\{j_1\},\{j_2\})} = \beta_{10(\{j_1\},\{j_2\})} + r_{1i(\{j_1\},\{j_2\})}$

(Adapted from Grady & Beretvas, 2010, pp. 405-407)

Growth Models With Mobility

At Level 3 (school):

Starting point takes into account all first-year schools

Intercept:

 $\beta_{00(\{j_1\},\{j_2\})} = \gamma_{0000} + \sum_{h \in \{j_1\}} w_{tih} u_{00h0}$

Slone

 $\beta_{10(\{j_1\},\{j_2\})} = \gamma_{1000} + \Sigma_{h \in \{j_1\}} w_{tih} u_{10h0} + \Sigma_{h \in \{j_2\}} w_{tih} u_{100h}$

Growth curve also takes into account all subsequent schools

(Adapted from Grady & Beretvas, 2010, pp. 405-407)

Can ignoring mobility change your study's findings?

YES

Goldstein, Burgess, & McConnell (2007) Chung (2009) Grady & Beretvas (2010)

JOHNS HOPKIN

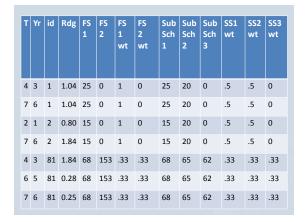
Luo & Kwok (2012)

SETTING UP THE DATA

Growth Models or Repeated Measures

JOHNS HOPKIN

Data for MLwiN


- Prepare your data file in another stats program
- Single data file (unlike HLM)
- · Each row is a measurement occasion
- Student and school info repeated within student
- Student and school IDs must start at 1
- Some data manipulation can be done in MLwiN (sort, rename, select cases)

JOHNS HOPKIN

Data for MLwiN

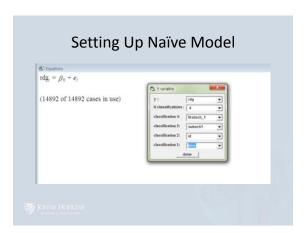
- · Columns:
 - Measurement Occasion or Time (Level 1)
 - Year (for growth model, starts at 0)
 - ID (Level 2)
 - Rdg (Dependent Var or Outcome)
 - First_School_1, First_School_2, etc and weights
 - Subsequent_School_1, Subs_Sch_2, etc and weights
 - Student covars
- · Let's look at the data!

USING MLWIN TO MODEL STUDENT GROWTH WITH MOBILITY

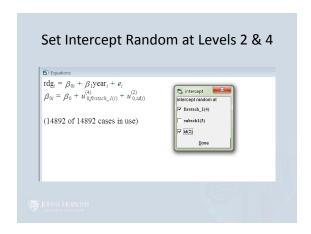
Growth Models or Repeated Measures

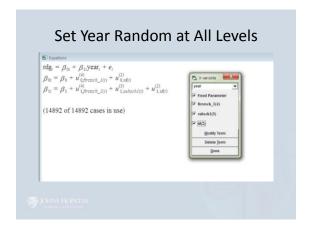
JOHNS HOPKINS

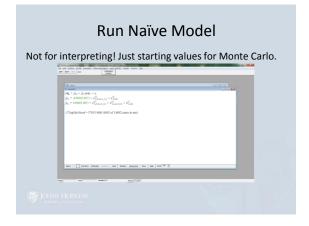
Setting Up Models in MLwiN

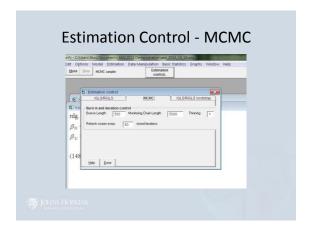

- Sort by:
 - First_Sch_1
 - Subsequent_Sch_1
 - Student
 - Time

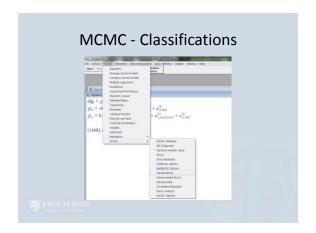
JOHNS HOPKIN

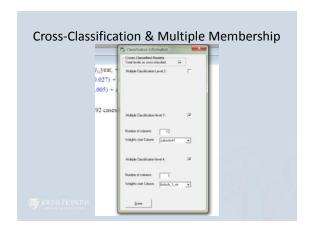

Setting Up Models in MLwiN

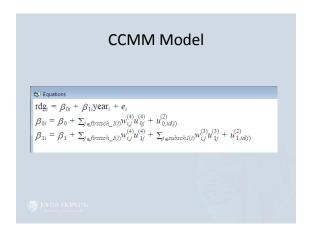

- Run "naïve" model using hierarchical nesting:
 - First_Sch_1 (Level 4)
 - Subsequent_Sch_1 (Level 3)
 - Student (Level 2)
 - Time (Level 1)
- This gives starting values for actual modeling using Monte Carlo

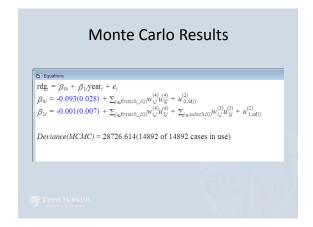


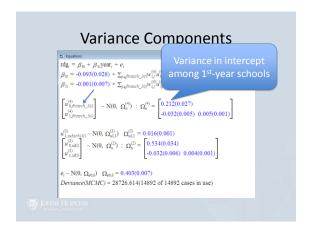


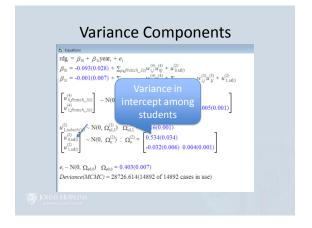


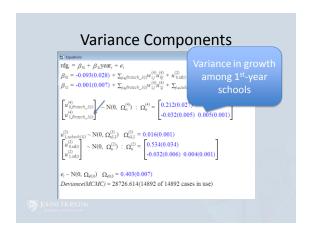


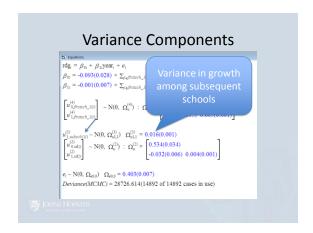


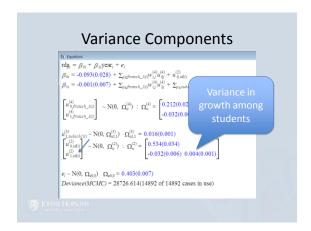

Adding Cross-Classification & Multiple Membership to the Model The "real" model using CCMM: First_Sch_1 - First_Sch_4 (CC Level 3 - MM) Subs_Sch_1 - Subs_Sch_12 (CC Level 3 - MM) Student (Level 2) Time (Level 1) First switch to Monte Carlo Then set cross-classifications and multiple memberships

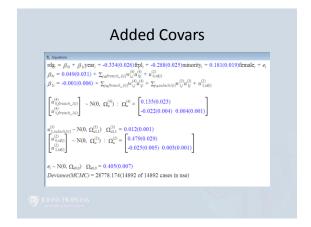












Variance Components

•		
	Intercept Estimate (SE)	Growth Estimate (SE)
Students	.479 (.029)	.003 (.001)
First schools	.135 (.023)	.004 (.001)
Subsequent schools	N/A	.012 (.001)

- Most of the variation in initial reading scores is due to variation among students
- Students' growth is due largely to influence of schools, not students
- Small estimates of growth likely due to use of standardized z scores

JOHNS HOPKIN

Required Reading:

MLwiN online course at Center for Multilevel Modelling www.bristol.ac. uk/cmm/

My contact info: Bess Rose brose6@jhu.edu

- Fielding & Goldstein (2006): Crossclassified and Multiple Membership Structures in Multilevel Models http://www.education.gov.uk/publications/eorderingdownload/rr791.pdf
- Grady & Beretvas (2010): Incorporating student mobility in achievement growth modeling: A cross-classified multiple membership growth curve model Multivariate Behavioral Research
- Leckie & Bell (2013): MLwiN Practical on Cross-Classified Multilevel Models (MLwiN course)
- Leckie & Owen (2013): MLwiN Practical on Multiple Membership Multilevel Models (MLwiN course)

References

- Browne, W. J. (2012). MCMC estimation in MLwiN version 2.26. Centre for Multilevel Modelling, University of Bristol.
- Bryk, A. S., Sebring, P. B., Allensworth, E., Luppescu, S., & Easton, J. Q. (2010). *Organizing schools for improvement: Lessons from Chicago*. Chicago: The University of Chicago Press.
- Chung, H. (2009). The Impact of Ignoring Multiple-Membership
 Data Structures. Dissertation. The University of Texas at
 Austin
- Fielding, A. & Goldstein, H. (2006). Cross-classified and Multiple Membership Structures in Multilevel Models: An Introduction and Review. Research Report No. 791. Department for Education and Skills.

References

- Goldstein, H. (2003). *Multilevel Statistical Models*, 3rd ed.
- Goldstein, H., Burgess, S., & McConnell, B. (2007). Modelling the effect of pupil mobility on school differences in educational achievement. *Journal of the Royal Statistical Society*, 170, 941-954.
- Grady, M. W., & Beretvas, S. N. (2010). Incorporating student mobility in achievement growth modeling: A cross-classified multiple membership growth curve model. *Multivariate Behavioral Research*, 45, 393-419.

References

- Leckie, G., & Bell, A. (2013). Cross-Classified Multilevel Models MLwiN Practical. LEMMA VLE Module 12, 1-60. http://www.bristol.ac.uk/cmm/learning/course.html
- Leckie, G., & Owen, D. (2013). Multiple Membership Multilevel Models – MLwiN Practical. LEMMA VLE Module 13, 1-48. http://www.bristol.ac.uk/cmm/learning/course.html
- Luo, W., & Kwok, O. (2012). The consequences of ignoring individuals' mobility in multilevel growth models: A Monte Carlo study. *Journal of Educational and Behavioral Statistics*, 37, 31-56.

References

- Rasbash, J., Browne, W. J., Healy, M., Cameron, B., & Charlton, C. (2013). MLwiN Version 2.27. Centre for Multilevel Modelling, University of Bristol.
- Raudenbush, S. W., & Bryk, A. S. (2002). *Hierarchical linear models: Applications and data analysis methods*, 2nd ed. Thousand Oaks, CA: SAGE.
- Rumberger, R. W. (2002). Student mobility. In *Encyclopedia of Education* (2nd ed., Vol. 7, pp. 2381-2385). New York: Macmillan Reference USA.

