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Section	  1:	  Introduction	  to	  Latent	  Growth	  Curve	  Modeling	  
 

Definition	  of	  Latent	  Growth	  Curve	  Modeling	  
 

è Latent Growth Curve (LGC) modeling is an analytic technique within the structural 
equation modeling (SEM) framework to examine longitudinal change over time. LGC 
modeling allows evaluators to examine intra-individual change and inter-individual 
differences in intra-individual change, as well as examining both linear and non-linear 
change (i.e., quadratic or cubic growth).  
 

è Because LGC Modeling is estimated within a structural equation Modeling (SEM) 
framework, a foundational knowledge of SEM is helpful for understanding the 
underlying features of LGC models. This review is outside of the scope of this resource 
packet. For further information, see these recommendation resources: 
 

Byrne, B. M. (2012). Structural Equation Modeling with Mplus: Basic concepts, applications 
and programming. New York, NY: Taylor & Francis. 

 
Kline, R. B. (2011). Principles and Practice of Structural Equation Modeling. New York, NY: 

Guildford Press.  

Assessing	  Differences	  Over	  Time:	  Types	  of	  Change	  	  
 

There are several differences between and within program participants that are relevant for 
evaluation design and practice.  

è Inter-individual differences (between individuals):  
o Inter-individual differences are the differences between people that we observe at 

any given time point. For example, differences across participants in their level of 
knowledge at program enrollment. 

è Intra-individual change (change within individuals over time):  
o Intra-individual change is the change within individuals that occurs over time (the 

same individual over time). For example, changes in knowledge or attitudes 
experienced by program participants during their participation in a program would 
be intra-individual change. 

è Inter-individual differences in intra-individual change (between individual differences 
in change within individuals): 

o This idea is the combination of the previous two types of change. Inter-individual 
differences are differences between people in their rate of change over time. For 
example, over the course of program participation, participants may experiences 
different difference levels of changes in knowledge over time. 
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Traditional	  Approaches	  to	  Examining	  Change	  Over	  Time	  
 

There are several conventional statistical approaches to investigating change between and 
within evaluation participants, including static data, two-wave panel data, and repeated measures. 
These approaches have their unique advantages and disadvantages.  

Figure 1. Features of Traditional Approaches to Examining Change Over Time 

 

Although repeated measures statistical techniques, such as ANOVA, ANCOVA, or MANCOVA, 
can handle multiple data points, there is a growing recognition that these conventional 
approaches are inadequate for several reasons: 

è These statistical approaches only provide information about the average rate of change 
for the overall sample and are incapable of capturing individual differences in change. 

è These techniques assume that change in participants is linear. 
è These statistical methods only analyze change in observed group means, individual 

differences in trajectories are treated as error variance. 
è Finally, many of these statistical methods rely on the assumption that error variances of 

repeated measures are equal and independent, which is an assumption that is commonly 
violated with repeated measures data. 

Advantages	  of	  LGC	  Modeling	  Techniques	  
 

LGC modeling is a more sophisticated and rigorous approach to dealing with repeated 
measures data than these traditional approaches. LGC modeling is based on the analysis of both 
means and covariances, allowing the identification of both group effects in observed means, as 
well as individual effects observed in the covariances. LGC modeling techniques estimate the 
average rate of change of a sample over time, as well as the variability of that change rate within 
the sample. This is important because although we often want to understand the average change 
of participants in the programs we evaluate, we also want to understand individual variation in 

Static Data One time-point Capture inter-individual 
differences 

Two Wave 
Panel Data 

Two time-points 
Captures inter-individual 

differences, and linear 
intra-individual 

differences  

Repeated 
Measures 

Multiple data 
collection points 

Captures inter-individual 
differences, and linear or 

non-linear intra-
individual differences  
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change, so we can begin to answer questions about why some people experience changes in 
outcomes and others do not. Finally, unlike the previously mentioned statistical techniques, LGC 
modeling has the capability to explicitly assess and model measurement error. 

LGC	  Modeling	  &	  Program	  Evaluation	  
 

Latent growth curve modeling is a quantitative analytic technique that provides 
evaluators with the ability to sensitively assess how participants change over time by allowing 
evaluators to assess whether participants are changing in the same way (e.g., increasing, 
decreasing or not changing over time), whether the change is linear, and whether factors such as 
participant characteristics or program participation predicts change over time on program 
outcomes (Byrne, 2012).  

LGC modeling techniques can enhance our evaluation practice by improving our ability to: 

1. Address more nuanced questions about change over time. This allows us, as 
evaluators, to be more responsive to the information needs of our clients. 

2. Accurately assess change over time in participants (i.e., examining both linear and 
non-linear change). 

3. Understand participant differences in change over time and use predictors to explain 
heterogeneity of participants’ development in program outcomes. 

4. Examine change in more than one construct simultaneously (i.e., examine how 
participants’ development in one outcome domain influences participants’ 
development in other outcome domains) 

5. Enhance the validity of evaluation findings through enhanced statistical rigor and 
control 

Given that high standards for systematic inquiry are represented in the American 
Evaluation Association (AEA)’s guiding principles, evaluators should strive to increase the 
accuracy and clarity of evaluation findings. Our guiding principle of “systematic inquiry” urges 
us to “conduct systematic, data-based inquires, adhering to the highest technical standards 
appropriate to the methods we use.” As statistical tools and knowledge evolves, it is vital that we 
stay up to date and continuously adapt our analytic approaches to meet new standards of 
technical rigor. LGC modeling techniques are one example of sophisticated methods that have 
been developed to enable us to adhere to the field’s highest technical standards. While there is 
increased recognition of the relevance of LGC modeling in psychology and other academic 
research circles, this is still a relatively new technique for the field of evaluation. As the field of 
quantitative methods advances, it is important that evaluators embrace new techniques available 
to improve evaluation practice and ensure the sustainability of the discipline. 

Finally, these statistical techniques allow evaluators to answer more nuanced questions 
about change over time among program participants to better address the informational needs of 
the evaluand. As Figure 2 demonstrates, we can use LGC Modeling techniques to answer 
important evaluation questions, such as the questions outlined below.  
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Figure 2. Example Evaluation Questions Addressed by LGC Modeling 

 

Data	  Requirements/Assumptions:	  When	  can	  I	  conduct	  LGC	  Modeling?	  
 

There are several requirements that need to be met to conduct LGC modeling, including 
features of the data, sample size, and statistical assumptions. 

è Data Requirements: Collect at least 3 waves of data (repeated measures on 3 or more 
occasions) collected on a continuous dependent variable. Although the assessments do 
not need to be conducted at equally spaced intervals, all participants should be on the 
same assessment schedule. You can conduct a LGC model with only three data points, 
however the precision of your model increases with more waves of data. Additionally, 
measures should: 

o Be the same across waves of data collection 
o Not be standardized 
o Have strong psychometric properties (i.e., reliability, validity, factorial validity, 

measurement invariance1) 
 

è Sample Size Limitations: Your sample size must be large enough for the detection of 
person-level effects. A good rule of thumb is N = 200 or more per time point. 
 

è Statistical Assumptions: Efforts should be made to meet the statistical assumptions for 
Structural Equation Modeling, however LGC Modeling is fairly robust to violations of all 
of these assumptions and you can explicitly test them in the model. The statistical 
assumptions include: 

o Multivariate normality 
o Homoscedasticity (error variances are equal across time) 
o Independence of errors (errors are uncorrelated)  

                                                
1 For a description of how to assess longitudinal invariance see 
http://comm.eval.org/communities/resources/viewdocument/?DocumentKey=fda57328-2b30-
4d48-9b41-6bd584072cf1 

What is the pattern of the 
longitudinal change over 
time (linear, non-linear)?  

Are there individual 
differences in participants' 

change over time? 

Does the initial level of an 
outcome predict the rate of 

change?  

What predicts initial levels 
or change over time (i.e., 

participant or program 
characteristics, program 

participation)?  

Does the rate of change 
predict another outcome? 

Is change in one domain 
(i.e., social-emotional) 

related to change over time 
in another domain (i.e., 

academic)?  
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Latent	  Growth	  Curve	  Modeling	  Basics	  
 

The LGC model essentially has two core components: the within-person estimates and 
the between person estimates (see Figure 3). For each of these components, an intercept and a 
slope factor are estimated.  

Figure 3. Core Components of Latent Growth Curve Models 

 

è WITHIN PERSON: The within-person component of the model assesses intra-individual 
change in an outcome. This is the part of the model that assesses observed differences in 
group means.  

o Intercept Mean: The mean of the intercept is the average score of your outcome of 
interest at time one, adjusted for measurement error. This estimate answers questions 
such as, “What is the average level of life satisfaction in my sample at pre-test?” 
 

o Slope Mean: The mean of the slope is the average rate of change in your outcome of 
interest over time, adjusted for measurement error. This estimate answers questions 
such as, “What is my sample’s average annual rate of change in life satisfaction 
across three years?” 
 

è BETWEEN PEOPLE: In contrast, the between people part of the model assesses inter-
individual differences in change and is based on covariances.  
 

o Intercept Variance: The estimate for the variance of the intercept reflects the range of 
individual differences around the average initial level, and answers questions such as, 
“Are there individual differences in life-satisfaction at pre-test?”  
 

o Slope Variance: The variance of the slope provides information about inter-individual 
differences in change over time (intra-individual change). This estimate answers 
questions such as, “Are there individual differences in my samples’ development of 
life satisfaction over time?”  
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Specifying	  a	  LGC	  Modeling	  for	  Estimation	  &	  LGC	  Modeling	  Figures	  
 

There are several elements of LGC modeling figures; some of these components are 
similar to the models developed for Structural Equation Modeling (SEM) and other components 
are unique (see Figure 4 for a visual representation).  

Intercept-Slope Covariance: The intercept-slope covariance describes the relationship between 
the starting place or time 1 value (intercepts) and rate of change (slope). Because models slopes 
can be positive or negative, the intercept-slope covariance can be a little tricky because the 
interpretation of the covariance is dependent on the direction of our slope, as values can either 
increase or decrease over time.  

è For a Positive Covariance: A positive covariance means that higher initial levels lead to 
higher positive rates of change, while lower initial levels relate to more negative rates of 
change.  

o A positive intercept-covariance coupled with a positive slope means that higher 
initial levels are related to a steeper slope (or higher rate of change), and lower 
initial levels are related to slower increases or less steep positive slope.  

o A positive intercept-covariance coupled with a negative slope means that higher 
initial levels are related to slower decline or less decline over time, and lower 
initial levels are related to steeper declines or steeper negative slope. 
 

è For a Negative Covariance: A negative covariance means higher initial levels lead to more 
negative rates of change, while lower initial levels relate to more positive rates of change.  

o A negative intercept-covariance coupled with a positive slope means that higher 
initial levels are related to a slower increase (or slower rate of positive change), 
and lower initial levels are related to steeper increases or steeper positive slope.  

o A negative intercept-covariance coupled with a negative slope means that higher 
initial levels are related to steeper decline or more decline over time, and lower 
initial levels are related to slower declines or less steep negative slope. 

 

Intercept Factor Loadings: The values you assign for the intercept must be constrained to be 
equal by setting them to the same value. Conventionally, these paths are constrained or “fixed” 
to “1.” The value you assign is arbitrary, however all paths must be constrained to the same 
number. All paths need to be equal at all time points, so the value of the intercept remains 
constant across time for each individual. This is because the intercept represents initial status and 
therefore cannot fluctuate over time. 

Slope Factor Loadings (Modeling Time): The values you assign for the factor loadings from 
the slope to the manifest indicators tell the program how to interpret time. These loadings are our 
way of modeling time. The first slope path does not always have to represent the initial status. If 
your theory suggests that the true initial status is at the second assessment than you can put the 
zero there, thereby specifying this assessment as the true intercept. The other values have to 
represent a linear transformation of time (for linear models) so if you set your intercept to a 
second or third time points than the time points preceding the intercept have to be less than one, 
meaning they must have negative values.  



AEA 2014: Latent Growth Curve Modeling    9 

The constraint for “initial status” (intercept) will always be zero. Although the numbers assigned 
to the fixed loadings for the slope are arbitrary, the distance between these numbers represent the 
metric of time. For example, if you had three assessments that were each administered one-year 
apart, your value for the fixed loadings would be 0 (intercept), 1 (time two loading), and 2 (time 
three loading). With these loadings, an increase of “1” represents a year of time. In contrast, if 
your second assessment was administered six months after the first assessment and the third 
assessment was administered two years after the second assessment then your loadings would be 
0 (intercept), 1 (time two loading), and 6 (time three loading). This is because in this example, 
the value of a “1” represents 6 months of time.  Because the third assessment loading must be on 
the same metric of time as the second assessment loading, we divide the number of months 
between the first assessment and the third assessment, and then divide that value by the amount 
of time that passed between the first assessment and second assessment (36/6=6).  

Quadratic Factor Loadings (Note: not featured in linear models): Quadratic factor loadings are 
the squared value of your linear slope factor loadings. Given that LGC models should be 
parsimonious, linear slopes should always be assessed prior to quadratic slopes. If (1) a model 
with a linear slope is not an adequate representation of the data (i.e., poor model fit), (2) a model 
with a quadratic slope has significantly improved model fit, and (3) you have a significant mean 
for your quadratic factor then you have evidence to suggest that the change is quadratic and not 
linear.  

Observed Indicators: The observed variables are the observed scores for the construct of 
interest at each of your data collection time points. 

Residual Error Terms: The error variance associated with each of the observed indicators. 

 

Figure 4. Example Latent Growth Curve Model Figure 

 
 

KEY: 
Intercept-Slope Covariance 

Intercept 

Fixed Intercept Paths  

Slope 

Fixed Slope Paths 

Four Time Points 

Four Residual Error Terms 
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LGC	  Modeling	  with	  Predictors	  
 

LGC modeling techniques allow you to examine the role of predictors on your initial 
level and growth over time on the dependent variable. Latent growth curve models that include 
predictors are called conditional LGC models. Interpretations of model parameters are changed 
slightly for conditional models. This is because the interpretation of the average values for the 
intercept and slope are dependent on the other variables in the model, so in a sense it is 
interpreted in the same way you would interpret an intercept in regression, meaning that they are 
the average scores when everything else in the model is equal to zero. Furthermore, the 
interpretations of the slope variance and intercept variance also change, as they now represent 
the variation remaining in the intercept and slope after the variability in their prediction by the 
other variables in the model has been explained.  

There are two types of predictors that you can incorporate into a LGC Model: (1) time 
varying predictors and (2) time invariant predictors.  

è Time-Invariant Predictors: These predictors are measured at one time-point and thus cannot 
vary in the model. Examples of time invariant predictors include, ethnicity, whether or not 
the person participated in a program or specific component of a program, or the age of the 
person at entry into the program. To assess the association between these predictors and 
development in your construct you regress the slope and intercept on to the time-invariant 
predictors. 
  

è Time Varying Predictors: This type of predictor varies over time and is measured at multiple 
time points. Examples of this include, constructs such as school engagement, life satisfaction, 
or motivation. Given that these predictors are also dependent upon time, they are a little more 
challenging to assess. One way to assess them is to conduct multiple simultaneous latent 
growth curve models, sometime referred to as parallel process models. For example, we 
could conduct a LGC model of self-efficacy and school engagement together and then look at 
the (1) covariance between the intercepts to see if self-efficacy at time one is related to 
school engagement at time one, (2) the covariance between the slopes to see if change in self 
efficacy is related to change in school engagement, (3) the covariance between the intercept 
of self-efficacy and the slope for school engagement to investigate if self-efficacy at time one 
is associated with change in school engagement and vice versa. There are other ways to 
model these time-varying predictors such as the use of definition variables or incorporating 
your time-varying predictors as repeated predictors of the outcome and you will find citations 
to articles that discuss this further in your resource packet. 

Section	  2:	  Annotated	  Mplus	  Output	  
 
Below you will find annotated syntax and output for each level of measurement 

invariance. Colored font represents the standard commands used in Mplus syntax. Regular font 
represents the variable commands specific to this dataset. Bolded text represents descriptions of 
syntax and output. 
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Syntax	  for	  Unconditional	  LGC	  Model	  
 

TITLE: LGC Model Self Efficacy –Title you gave your analysis. 

DATA: file is longdata.dat; – Save your input file in the same folder as your data and 
enter the name of the dataset here.  

VARIABLE: – This is the start of the command where you describe your variables. 

NAMES ARE ID GEND SAFETY FALL09 SPRING10 FALL10 SPRING11; – All variables 
must be listed in the SAME order as listed in your database. 

USEVARIABLES ARE FALL09 SPRING10 FALL10 SPRING11; – List only variables 
used in current analysis. 

MISSING=ALL (999); – This is how you tell Mplus what your missing data code is. 

ESTIMATOR IS = MLR; This is where you specify which estimator you want. MLR 
stands for full maximum likelihood with robust standard errors. This estimator is 
robust to departures from univariate and multivariate normality. 

MODEL: – Enter model commands below here. 
 
ISE  BY   Fall09@1	  Name your intercept here (the name is arbitrary).  

Spring10@1	  The BY command tells Mplus what indicator  
Fall10@1	  	  variables your latent variable is measured by.  
Spring11@1;	  The @ command constrains or fixes the intercept loadings. 
 

SSE  BY  Fall09@0 Name your slope variable here (the name is arbitrary). 
               Spring10@1 
               Fall10@1.7   
               Spring11@2.7;   
 
ISE WITH SSE; – The “WITH” command specifies a covariance or correlation. 

[ISE SSE]; – Here you are specifying that the intercept mean and slope mean 
should be estimated.  

[Fall09-Spring11@0]; – You are constraining the intercepts of observed scores to be 
zero. 

 

“Short-‐Cut”	  Syntax	  for	  Unconditional	  LGC	  Model	  
 

MODEL: 
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ISE SSE | Fall09@0 Spring10@1 Fall10@1.7 Spring11@2.7; The | informs the program 
that you are estimating a LGC model.  

 

Optional	  Syntax	  
 

OUTPUT: PATTERNS MODINDICES SAMPSTAT; The “patterns” command requests 
all of the different missing variable patterns, the “modindices” command 
requests information on model parameters that are poorly estimated, the 
“sampstat” command requests sample statistics for all the variables in your 
model.  

Selected	  Annotated	  Output	  for	  Unconditional	  LGC	  Model	  
 

COVARIANCE COVERAGE OF DATA Covariance coverage is the proportion of the 
sample with data present across two variables. The default minimum coverage 
is .10 or 10%. Given that attrition is a common occurrence in longitudinal studies, 
this part of the output is important to examine when conducting latent growth 
curve models.  

Minimum covariance coverage value   0.100  

PROPORTION OF DATA PRESENT 

           Covariance Coverage 
              Fall09          Spring10         Fall11          Spring11 
                   _____      ________      ________      ________ 
 Fall09           0.419 
 Spring10       0.317         0.461 
 Fall10            0.189        0.221         0.709 
 Spring11        0.116        0.134        0.505         0.587 
 
Chi-Square Test of Model Fit- The MLR estimator changes the distribution of the chi-
square test. Because of this, when conducting chi-square difference tests you 
must use a correction. You can find more information about this on the Mplus 
website.  
 
          Value         8.919* 
          Degrees of Freedom      5 
          P-Value   0.1123 
          Scaling Correction Factor for MLR 1.1688 
MODEL RESULTS- Here we have the unstandardized estimates of our latent 
growth curve model. The loadings of the slope and intercept all have a p-value of 
999 because they are constrained 
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                                                    Two-Tailed 
                        Estimate       S.E.  Est./S.E.    P-Value 
    ISE      | 
    Fall09               1.000      0.000    999.000    999.000 
    Spring10           1.000      0.000    999.000    999.000 
    Fall10                1.000      0.000    999.000    999.000 
    Spring11            1.000      0.000    999.000    999.00 
    
    SSE      | 
    Fall09               0.000      0.000    999.000    999.000 
    Spring10           1.000      0.000    999.000    999.000 
    Fall10                1.700      0.000    999.000    999.000 
    Spring11            2.700      0.000    999.000    999.00 
 
 
 SSE      WITH ISE               -0.050      0.023     -2.125      0.034 Here we have the intercept-
slope covariance.  
 
 Means Here we have the means for the intercept and slope.  
    ISE                4.131      0.025    163.136      0.000 
    SSE               -0.076      0.013     -5.788      0.000 
 
 Intercepts These are the intercepts that we constrained to 0 
    Fall09               0.000      0.000    999.000    999.000 
    Spring10          0.000      0.000    999.000    999.000 
    Fall10               0.000      0.000    999.000    999.000 
    Spring11           0.000      0.000    999.000    999.000 
 
 Variances Here we have the variances for the intercept and slope 
    ISE                0.309      0.044      7.075      0.000 
    SSE                0.034      0.016      2.191      0.028 
 
 Residual Variances Here is our residual error or measurement error 
    Fall09                 0.237      0.045      5.302      0.000 
    Spring10             0.331      0.026     12.755      0.000 
    Fall10                  0.401      0.025     16.050      0.000 
    Spring11             0.325      0.039      8.281      0.000 
 
 

Selected	  Syntax	  for	  Conditional	  LGC	  Model	  
 
  MODEL: 
 
       ISE SSE | Fall09@0 Spring10@1 Fall11@1.7 Spring11@2.7; 
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       ISE SSE ON GENDER SAFETY; Here we are regressing the intercept and slope    
onto our predictor variables (gender and safety) 
 

Selected	  Output	  for	  Conditional	  LGC	  Model	  
 
MODEL RESULTS 
 
ISE      ON 
    SAFETY                 0.163      0.051      3.191      0.001 
    GENDER              -0.168      0.052     -3.266      0.001 
 
 SSE      ON 
    SAFETY               -0.025      0.026     -0.936      0.349 
    GENDER               0.046      0.027      1.716      0.086 
 
 SSE      WITH 
     ISE               -0.049      0.024     -2.025      0.043 
 
 Intercepts The means for the slope and intercept are now located here because the 
model is conditional and the slope and intercept are now endogenous or 
dependent variables.  
    Fall09               0.000      0.000    999.000    999.000 
    Spring10          0.000      0.000    999.000    999.000 
    Fall10               0.000      0.000    999.000    999.000 
    Spring10          0.000      0.000    999.000    999.000 
    ISE                  4.130      0.043     95.112      0.000 
    SSE                -0.088      0.022     -4.086      0.000 
 
 Residual Variances The variances for the slope and intercept are now here. 
    Fall09             0.230      0.045      5.106      0.000 
    Spring10        0.335      0.027     12.536      0.000 
    Fall10             0.393      0.025     15.752      0.000 
    Spring11        0.335      0.040      8.476      0.000 
    ISE                 0.295      0.044      6.680      0.000 
    SSE                0.034      0.016      2.130      0.033 

Section	  3:	  Software	  Options	  
R 
Website: http://www.r-project.org/ 
Online Support: http://blog.revolutionanalytics.com/local-r-groups.html 
Pricing: Free 
 
Python 
Website: https://www.python.org/ 
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Online Support: https://www.python.org/community/ 
Pricing: Free 
 
EQS 
Website: http://www.mvsoft.com/ 
Online support resources: http://www.mvsoft.com/techsup.htm 
Pricing: Free 
 
Mplus 
Website: http://www.statmodel.com/ 
Online Support: http://www.statmodel.com/cgi-bin/discus/discus.cgi 
Pricing: Lifetime membership with upgrades included (range represents different packages 
available). Student: $195-$350, University Pricing: $595-895, 
Commercial/non-profit/government: $695-1,095 
Note: Highly recommend by workshop facilitators, technical support from creators of software 
(usually within 24 hours). 
 
Amos 
Website: http://www-03.ibm.com/software/products/us/en/spss-amos/ 
Pricing: Approximately $1,590 (exact pricing range unknown) 
Note: Rated highly for its graphical component 
 
LISREL 
Website: http://www.ssicentral.com/lisrel/ 
Online Support: http://www.ssicentral.com/lisrel/resources.html 
Pricing: Single User $495, 12 month rental $130 

STATA 
Website: www.stata.com 
Online Support: www.stata.com/support 
Pricing: $1,695 perpetual license 

Section	  4:	  Additional	  Resources	  
 

Byrne, B. M. (2012). Structural equation modeling with Mplus: Basic concepts, applications and 
programming. New York, NY: Taylor & Francis. 

 
Byrne, B. M., & Crombie, G. (2003). Modeling and testing change: An introduction to the latent 

growth curve model. Understanding Statistics: Statistical Issues in Psychology, 
Education and the Social Sciences, 2, 177-203. 

 Note: Addresses missing data strategies for LGCM 
 
Curran, P. J., Muthen, B. O., & Harford, T. C. (1998). The influence of changes in marital status 

on developmental trajectories of alcohol use in young adults. Journal of Studies on 
Alcohol and Drugs, 59, 647. 
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 Note: Time-varying predictors example 
 
Duncan, S. C., & Duncan, T. E. (1994). Modeling incomplete longitudinal substance use data 

using latent variable growth curve methodology. Multivariate Behavioral Research, 29, 
313-338. 

 Note: Addresses missing data strategies for LGCM 
 
Duncan, T. E., & Duncan, S. C. (2009). The ABC’s of LGM: An introductory guide to latent 

variable growth curve modeling. Social and Personality Psychology Compass, 3, 979-
991. doi:10.1111/j 

 
Duncan, S. C., Duncan, T. E., & Stryker, L. A. (2006). An introduction to latent variable growth 

curve modeling: Concepts, issues, and applications (2nd ed.). Mahwah, NJ: Erlbaum.  
 
Fan, X. (2003). Power of latent growth modeling for detecting group differences in linear growth 

trajectory parameters. Structural Equation Modeling, 10, 380-400. 
 
Grimm, K.J. & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. Structural 

Equation Modeling, 16, 676-701. doi:10.1080/10705510903206055  
 
Grimm, K. J., & Ram, N. (2012). Growth curve modeling from a structural equation modeling 

perspective. In B. Laursen, T. D. Little, & N. A. Card (Eds.), Handbook of 
Developmental Research Methods (pp. 411-431). New York: Guilford Press.  

 
Hu, L-T., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural 

equation modeling: Concepts, issues, and applications (pp. 76-99). Thousand Oaks, CA: 
Sage. 
Note: Descriptions of model fit indices 
 

Hu, L-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 
Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55. 
Note: Descriptions of model fit indices 

 
Muthén, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are 

not missing completely at random. Psychometrika, 52, 431-462. 
 Note: Addresses missing data in SEM Frameworks 
 
Preacher, K. J., Wichman, A. L., MacCallum, R. C., & Briggs, N. E. (2008). Latent growth curve 

modeling: Quantitative applications in the social sciences. Thousand Oaks, CA: Sage 
Publications. 

 
Willett, J. B., & Keiley, M. K. (2000). Using covariance structure analysis to model change over 

time. In H. E. A. Tinsley & S.D. Brown (Eds.) Handbook of applied multivariate 
statistics and mathematical modeling, (pp. 665-694). San Diego, CA: Academic Press.  

 Note: Discussion of time-varying predictors 
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Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and 
predictors of individual change over time. Psychological Bulletin, 116, 363-381. 

 
 
	  


