THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Knowledge that will change your world

Using GIS to Visualize & Compare Crime Incidence With Perception

School of Public Health: Evaluation and Assessment Unit

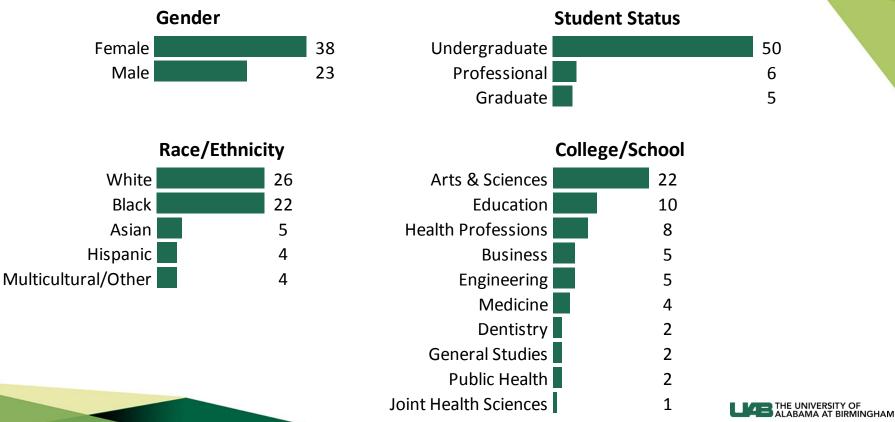
Ariann Nassel, MA Heidi Beck, MEM Wei Su, PhD

2014 American Evaluation Association Conference Denver, CO October 16, 2014

Overview

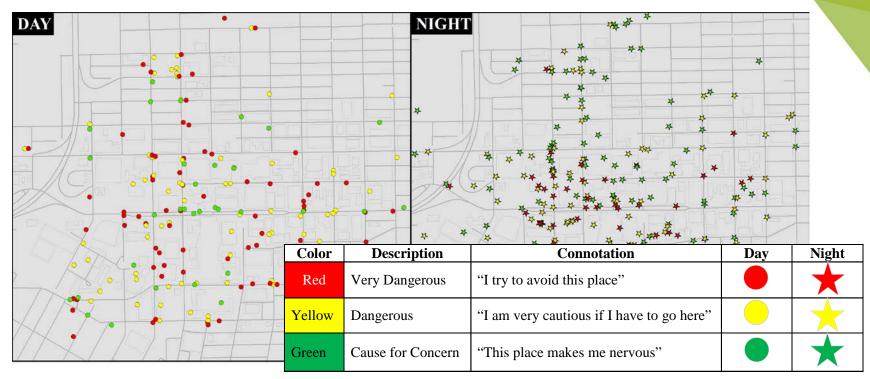
- Phase I: Perceptions of Risk on Campus
- Phase II: Crime Incidents on Campus
- Phase III: Integrative Analysis of Phases I & II
- GIS Data Visualization Lessons Learned
- Next Steps

Phase I: Perception of Risk on Campus


• Focus Group Mapping Activity

• Hot Spot Analysis

Focus Groups (n=61)


Knowledge that will change your world

Interview Protocol

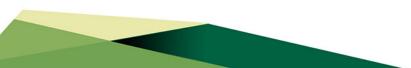
- How safe do you feel walking around (institution)?
- How does this perception differ at various times throughout the day (e.g., morning, afternoon, evening)?
- In general, what would help you feel more safe?
- Take your colored dots and indicate "hotspots" on the map related to your concerns about campus safety (Day & Night spots)
- Looking at the identified spots, what can we do to help you feel more secure at each location?
- Do you have other observations or comments?
- What is the best way to communicate with you regarding campus safety?

Focus Group Mapping Exercise

Phase II: Crime Incidents on Campus

• Data collection & specifications

• Hot Spot Analysis



Crime Incident Data

• Crime data from June 2009 to December 2011 was provided by campus police

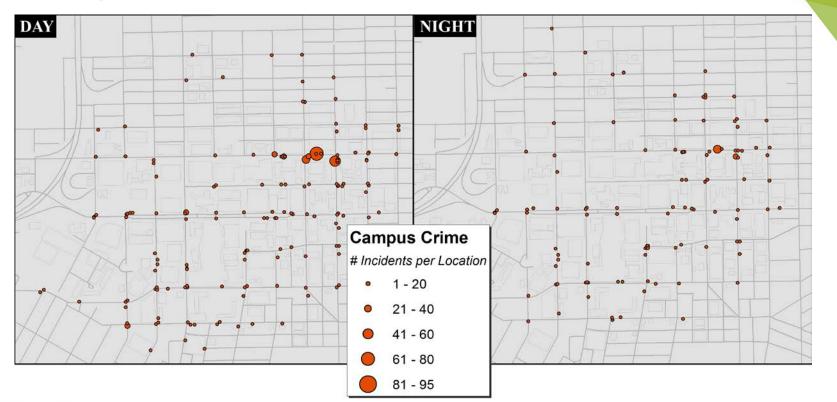
YEAR	CRIME INCIDENTS
June -Dec 2009	264
Jan – Dec 2010	489
Jan - Dec 2011	468
TOTAL	1,221

Crime Incident Data

Uniform Crime Reports (UCR) Categories	Crime Type	Day Crime Incidents	Night Crime Incidents	TOTAL
	Murder/Non-Negligent Murder	0	1	1
Part I: Violent Crimes	Forcible Sexual Offenses	2	3	5
	Robbery	6	6	12
Part I: Property Crimes	Arson	0	4	4
	Burglary	30	13	43
	Misdemeanor Larceny	398	170	568
	Felony Larceny	264	100	364
	Motor Vehicle Thefts	14	10	24
Part II: All Other Crimes	Non-Forcible Sexual Offenses	3	2	5
	Pedestrian/Vehicle Accidents	4	10	14
	Unlawful Breaking/Entering of a Vehicle	105	76	181
	Total	826	395	1,221

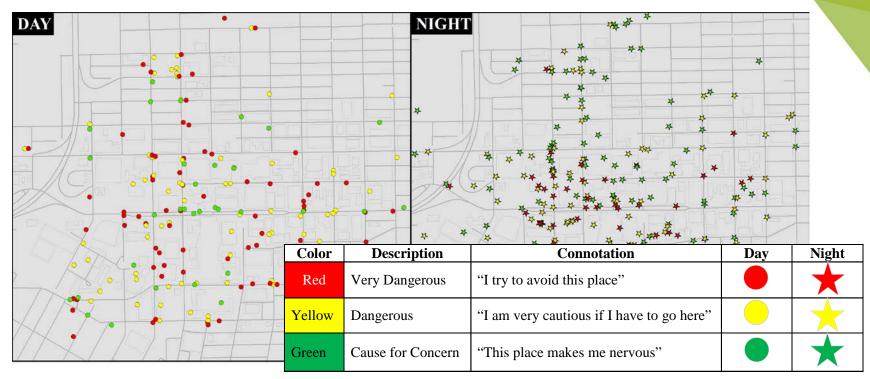
Crime Type Severity Survey

- Students were asked to rate how various types of crimes would make them feel
- Response options were spread across an 9-point Likert-type scale

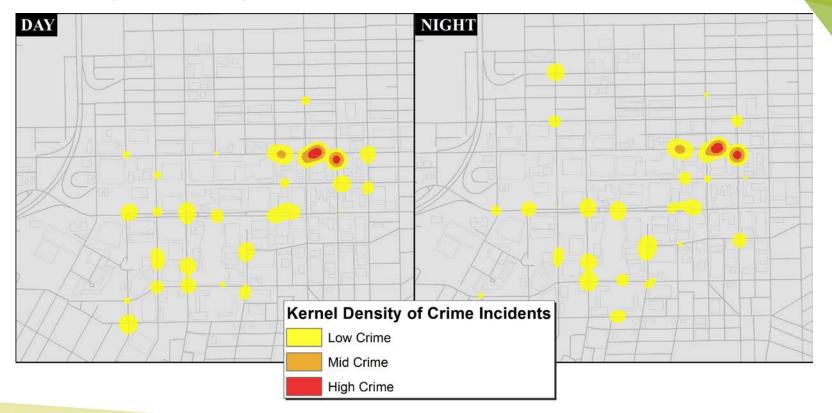


Crime Type Severity Survey Results

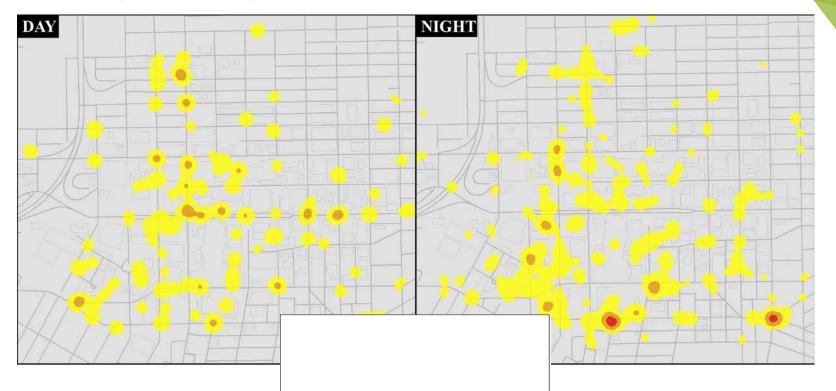
CRIME TYPE	М	Z Score	Z Score (recentered at 3)
Arson	8.42	1.38	4.38
Burglary	8.13	1.13	4.13
Felony Larceny	7.63	0.69	3.69
Misdemeanor Larceny	7.46	0.54	3.54
Robbery	7.29	0.4	3.4
Non-Forcible Sexual Offenses	7.08	0.21	3.21
Forcible Sexual Offenses	6.63	-0.18	2.82
Murder/Non-Negligent Murder	6.21	-0.54	2.46
Motor Vehicle Thefts	6.21	-0.54	2.46
Unlawful Breaking and Entering of a Vehicle (UBEV)	5.63	-1.05	1.95
Pedestrian/Vehicle Accidents	4.50	-2.03	0.97



Campus Crime Incident Data



Focus Group Mapping Exercise



Hot Spot Analysis of Crime Incidents

Hot Spot Analysis of Perceived Risk

Phase III: Integrative Analysis

• Where do students' perceptions of unsafe areas align with actual unsafe areas on campus?

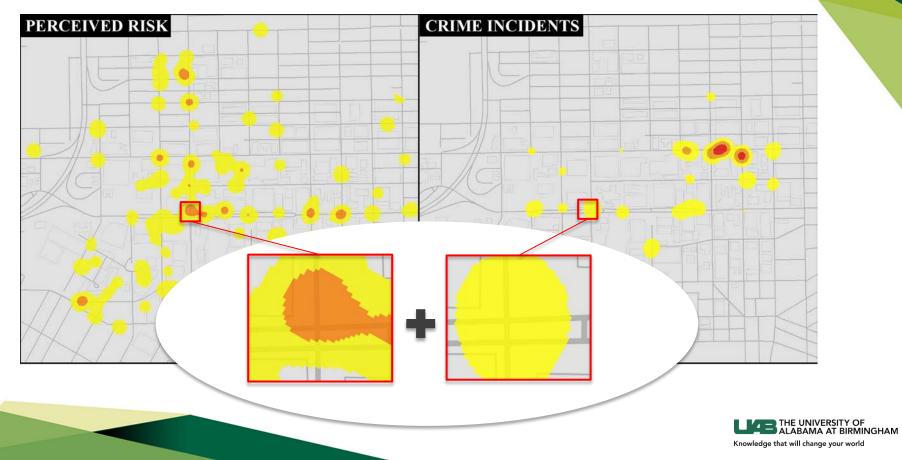
Phase III: Integrative Analysis

Potential outcomes from the analysis:

1. Locations of *high perceived risk*, but *low crime incidents*.

- a. Students are unnecessarily concerned as no safety risk appears to be present.
- b. Priority area for education/media–public relations intervention to alleviate unnecessary concerns.

2. Locations of *high crime incidents*, but *low perceived risk*.


- a. Students are unaware of a potential real threat.
- b. Highest priority for safety intervention.

3. Locations of *high crime incidents* and *high perceived risk*.

- a. Students are justifiably concerned about a location.
- b. High priority for safety intervention.


Integration Methodology

Raster Algebra

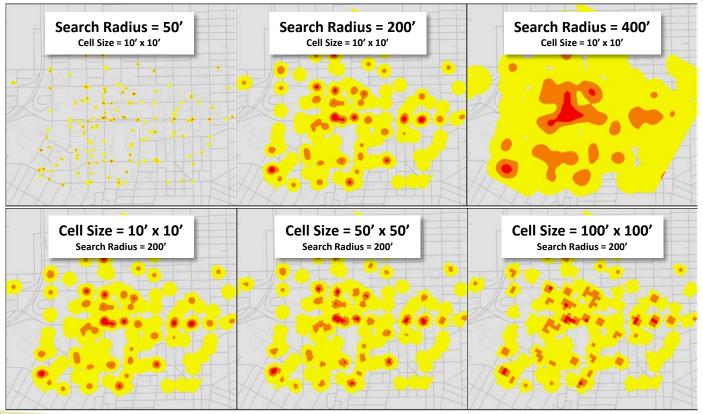

- Kernel Density layers were reclassified (cells assigned new values)
- Allows for easy identification and symbolization of integrated area

	RISK VALUE	CRIME VALUE
None	0	00
Low	1	10
Medium	2	20
High	3	30

Integration of Hot Spots

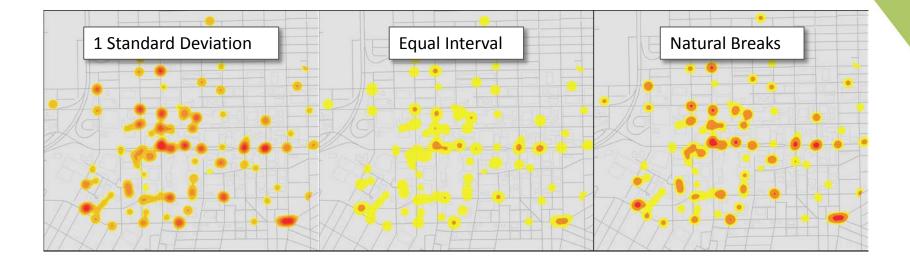
GIS Data Visualization Lessons Learned

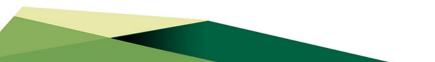
- Tool parameters matter
- Symbology classification matters



Tool Parameters Matter

	Kernel Density	X
How each data point is	Input point or polyline features	
-	DayPoints_Merge_July18	3 🔁 👘
weighted in the kernel <	Population field	
density layer	WT CHILD	
actioney tay of	Output raster	
	S: Evaluation Center GeoMAD Projects CampusSafety Scratch DayKDA200ft.img	
	Output cell size (optional)	
	Search radius (optional)	200
	Area units (optional)	
	SQUARE_MILES	Search radius
Output cell size 🖌		
		Bandwidth or kernel
=		
Raster/Image Resolution		
haster/inlage hesolution		
		*
	OK Cancel Apply Show	v Help >>
		ALABAMA AT BIRMINGHAM


Knowledge that will change your world


Tool Parameters Matter

Symbology Classification Matters

- Gain access to more comprehensive crime data
- Comparison of other hot spot method results (i.e. KDA vs. Getis-Ord Gi* vs. Local Moran's I)

References

- Azzam, T., & Robinson, D. (2013). GIS in evaluation: Utilizing the power of geographic information systems to represent evaluation data. *American Journal of Evaluation*, 34(2), 207-224. doi: 10.1177/1098214012461710
- Bailey, T. C. (1994). A review of statistical spatial analysis in geographical information systems. In S. Fotheringham & P. Rogerson (Eds.), *Spatial analysis and GIS* (pp. 13-44). Bristol, PA: Taylor & Francis.
- Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. *Theory into Practice, 39*(3), 124-131.
- Hatch, J. A. (2002). *Doing qualitative research in education settings*. New York: SUNY Press.
- Hites, L., Fifolt, M., Beck, H., Su, W., Kerbawy, S., Wakelee, J. A, & Nassel, A. (2013). A geospatial mixed methods approach to assessing campus safety. *Evaluation Review*, *37*(5), 347-369. doi: 10.1177.019384X13509815
- Krueger, R.A. & Casey, M.A. (2000) Focus Groups A Practical Guide For Applied Research, 3rd ed. Thousand Oaks, CA: Sage.
- Lampe, O. D., & Hauser, H. (2011). Interactive visualization of streaming data with kernel density estimation. *Proceedings of the IEEE Pacific Visualization Symposium, March* (1-4), 171-178.
- Miles, M. B., & Huberman, A. M. (1994). *Qualitative data analysis*, (2nd Ed.). Newbury Park, CA: Sage.
- Woehr, D. J. (1994). Understanding frame-of-reference training: The impact of training on the recall of performance information. Journal of Applied Psychology, 79 (4), 525-534.

Contact Information

Ariann Nassel, MA Program Director, Geospatial Mapping, Analysis, and Data (GeoMAD) Team Evaluation and Assessment Unit (205) 975-9477 anassel@uab.edu

Heidi Beck, MEM Program Manager and GIS Analyst, GeoMAD Evaluation and Assessment Unit hmbeck@uab.edu

Wei Su, PhD Program Manager and Statistical Analyst, GeoMAD Evaluation and Assessment Unit weisu@uab.edu The authors gratefully acknowledge the work of the project team: Matthew Fifolt, Jessica Wakelee, Shatomi Kerbawy and Lisle Hites.

For copies of this presentation, please go to: <u>www.soph.edu/csch/evaluation</u>

For Ariann's Eye's Only...

Question: Crime KDA map – why is it not showing there were more crimes during the day (over double) than night in the kernel density map?

Short Answer: We converted our kernel density values standardized z-scores.

Long Answer: We converted the kernel density values to z-scores so that we could work from a standardized scale. However, Wei and I just talked this out...z-scores are not ideal for comparing maps side by side (at least if the data is on a different range and with different means and standard deviations). Hindsight is 20/20...if we were able to do this over, we would have used the bare density values and placed them on the same data range/symbolization in order to show the comparison between day and night more accurately.

In summary, z-scores are bad for comparison maps – the original values are on different scales...symbolized scales need to be the same for any comparison. Once the values are converted to z-scores, you lose the flexibility of displaying the data on the same scale. We made a mistake in our data visualization... ⁽²⁾

