

Methods & Tools for Comparative Effectiveness Research

J. Michael Menke

Psychology, Evaluation Group for Analysis of Data, Pharmacoeconomics

University of Arizona

Foreground

The Demise of US Health Policy Agencies

- OTA's health program, 1975
- National Center for HC Technologies, 1978
- O IOM's Council on HC Tech Assessment, 1984
- O AHCPR, 1989

All dead by 2009

déjà vu? US Health Policy Agency in 2009?

- American Recovery and Reinvestment Act
- o \$1.1 billion
- Conrad Baucus Senate Bill
- HC Comparative Effectiveness Research Institute
- O How can it / will the CER work?
- (Re)Inspired by a paper by Gail Wilensky (2006)

CER Well-established in Other Countries

- O UK: NICE (National Institute for Health and Clinical Excellence)
- O France: HAS (Haute Autorite de Sante)
- Germany: IQWiG (Institute fur Qualtat und Wirtschaftlichkeit im Gesundhetiswesen)
- O Australia: (Pharmaceutical Benefits Scheme)
- Some Canadian provinces

Innovation

ACCESS TO MARKET

EMEA

FDA

PMDA

HEALTH TECHNOLOGY ASSESSMENT (CER)

HAS

NICE

IQWIG

DECISION-REIMBBURSEMENT-PRICING

\$

£

France: Comparative Effectiveness

Efficacy to effectivenessPhase 2 to 3

• Good enough to be reimbursed?

Better than other treatments?

A Hot Potato

- Free markets do not apply to health care
 - "Let market forces work" objection to US CER
 - The guy who orders it does not pay for it
- "If medical care had been any other industry it would have failed years ago."
 - Health care lacks transparency
 - Medical system uncertainty
- Health care system structure is highly resistant to change
 - Even though US medical innovation is so renowned for innovation

A Hotter Potato

- Valuing human life in \$
 - O QALY & cost/QALY
- Rule of rescue
- Americans not coping well with mortality
- Forgotten meaning / purpose of insurance
 - History of health / life insurance
- Blending of risk with disease (Aronoff)

Purpose of CER

- To tell us what works, when, and for whom? (well... maybe)
- To aid in making informed clinical and health policy decisions

Map of Presentation

Question >	Evidence Synthesis >	Comparison & Decide >	Implement or Clean-up
PIV	Smoking cessation	Bayesian mixtures	EVPI
		TreeAge decision modeling	
	Low back pain	Effect size to probability	
		Different kinds of distributions	
		Measurement CEA – units CUA – QALY's	
	menke@ema	Economics il.arizona.edu	

Innovative Systems and System Innovations to Improve Lives

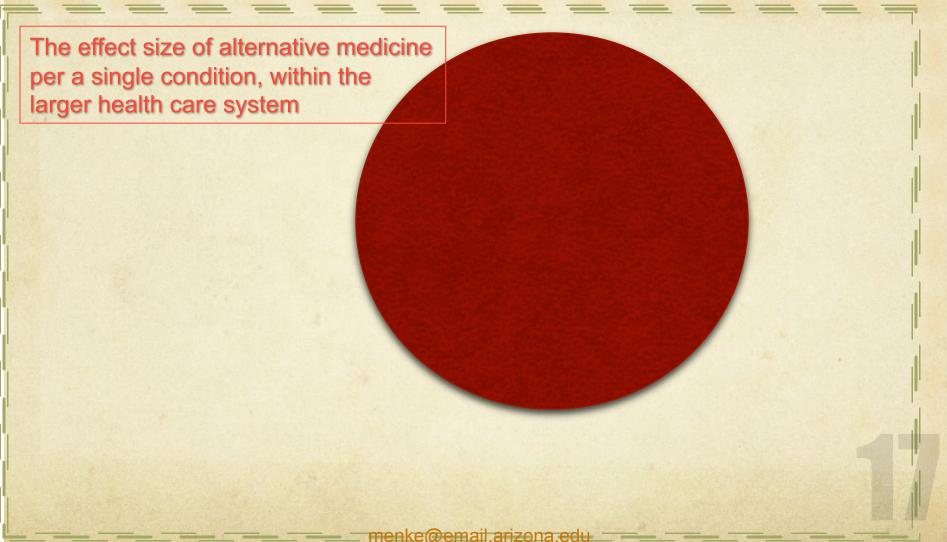
- Must evaluate
 - Perform as intended
 - Are they worth the cost?
- Evaluators need to capture data to
 - Inform policy
 - Inform service-level decision-making
- Continue or terminate (summative evaluation)
- Steer (formative evaluation)

An Innovation may Work in a Complex Manner

- Some helped some not
- Some helped and some hurt
- O Which ones patients?
 - O Does an innovation cost more or less?
 - Too often, the comparison is to its previous state or to a control state.

A Standard of Comparison

- Effect sizes comparing treatments to control are insufficient to decide among treatments
- A new treatment must be compared to something
 - Progression of science
 - Perhaps every intervention does better than nothing
- For health care innovation, the best comparison is the current standard of care.

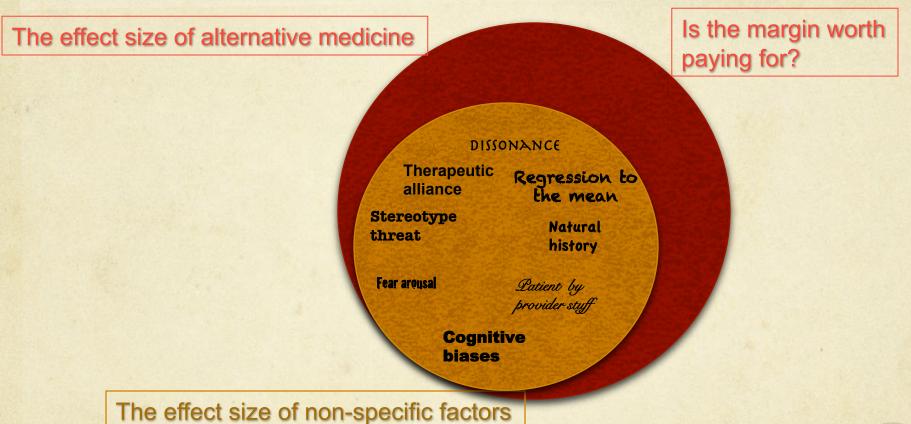

Questions Remaining after Evaluation

- O Has the uncertainty been reduced enough to make a decision after evaluation?
- Or do we need to know more for policy implementation?
- Can we help clinical decision making?
- Will a specific particular client benefit?

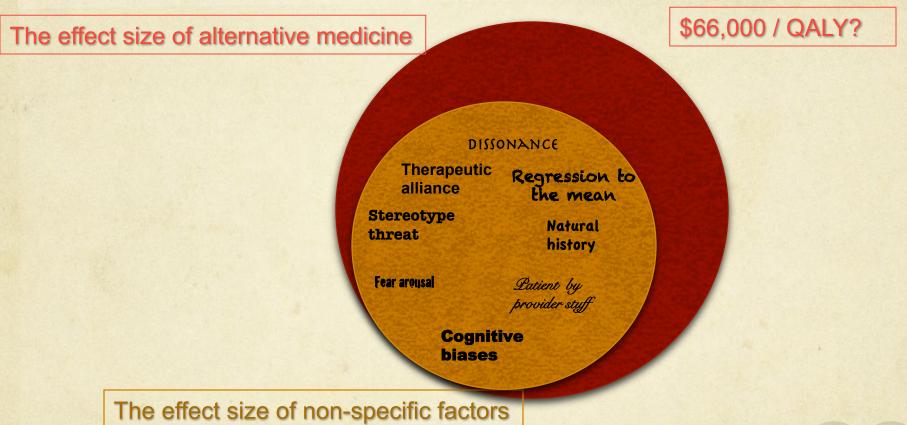
Health technology assessment methods can help answer these questions

Evaluating Medical Innovations

The Challenge for Alternative Medicine



The Challenge for Alternative Medicine: How Big Is the Margin?



The effect size of non-specific factors

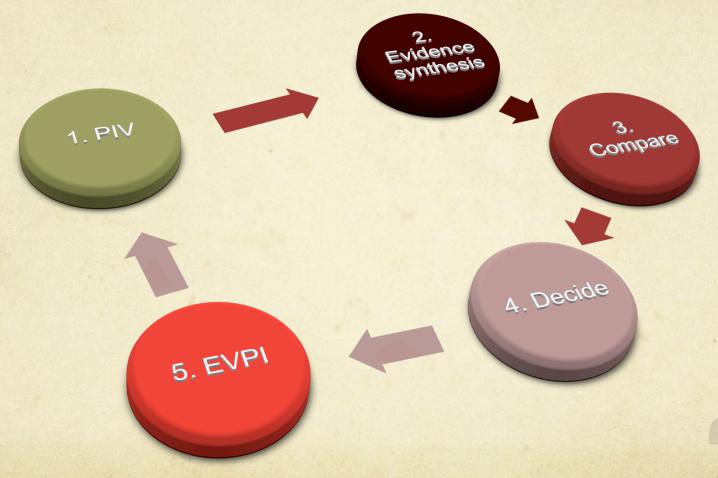
The Challenge for Alternative Medicine: How Big Is the Margin?

How Much Does the Margin Cost?

20

But

- Reducing demand for expensive medical care is a win!
- O But still, a "winner" can be
 - More directed,
 - More wisely referred to,
 - Improved, and
 - Replaced with better, cheaper alternatives


Risks are Becoming Diseases

- High blood pressure
- Cancer survivors
- Practitioner provided prevention
 - "Not so fast!"
 - Unaffordable, even when cheap

CER Guiding Principles

UK / NICE	US – imputed cynically		
Robust (for what?)	Yep, for efficacy, but not for informing policy and clinical decision-making		
Inclusive	Divisive		
Transparent	Opaque		
Independent of financial interests	Industry sponsored		
Timely	Working on it! C-Path for fast-tracking		

CER Steps

24

STEP 1. Prior Information Value, ex ante Valuation

- Is the problem important enough to warrant reimbursement in by a public or semi-public scheme?
 - A guaranteed treatment for athlete's foot.
 - O Cost: \$1 million per patient
- What is the PIV (prior information value)?
 - Larson RC, Kaplan EH. Decision-oriented approaches to program evaluation. New Directions for Program Evaluation: Evaluation of Complex Systems. 1981(10):49-68.
- O How valuable is the solution a particular health problem?

STEP 2. Evidence Synthesis

- Synthesized evidence must be usable
- The result must assist & not delay and obfuscate decision-making
- In effect, the evidence should reduce system uncertainty

Synthesizing Research By

- Meta-analyses
- Systematic reviews
- Cochrane collaboration
- Bayesian mixture-method

Cochrane Collaboration

- Archie Cochrane's call for systematic, up-to-date reviews of all relevant RCTs of health care
- Originally for reviews of controlled trials in pregnancy and childbirth
- To support the UK National Health Service
- Cochrane Centre' opened in Oxford, England in October 1992
- October 1993 first Cochrane Colloquium 77 people from eleven countries co-founded 'The Cochrane Collaboration'
- Currently > 5,000 health care researchers, providers, policy makers, managers, consumers and educators

Cochrane Collaboration

- Meta-analyses & systematic reviews
- Based on synthesized NHST research, so has many of the weaknesses of NHST
 - Avoids Type I error
 - More likely to make Type II error
 - (more likely to rule out an effective program or treatment)
 - Comparison groups vary (WLC, placebo, no-tx)
- Conclusions are often not informative, or do not address which innovation is better.

Cochrane Sample Summaries

Telephone: "Our review of trials found telephone counseling to be effective; multiple sessions are likely to be most helpful."

Physician: "when doctors provide brief simple advice about quitting smoking this increases the likelihood that someone who smokes will successfully quit and remain a nonsmoker 12 months later. More intensive advice may result in slightly higher rates of quitting." [p. 2]

Individual counseling: "The review found that individual counseling could help smokers quit, but there was not enough evidence about whether more intensive counseling was better."

Figure 2. Forest plot of comparison: I Individual counselling compared to minimal contact control, outcome: I.I Smoking cessation at longest follow-up.

		Treatm		Conti			Risk Ratio		Risk Ratio
-	Study or Subgroup						M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI
	1.1.1 Counselling ver		-	_	-				
	Windsor 1988	27	188	11	190	2.7%	2.48 [1.27, 4.85]		
	Bronson 1989	5	77	6	78	1.5%	0.84 [0.27, 2.65]		
	Weissfeld 1991	18	293	2	173	0.6%	5.31 [1.25, 22.63]	1991	
	Burling 1991	0	20	0	19		Not estimable		
	Pederson 1991	10	35	6	31	1.6%	1.48 [0.61, 3.59]		
	Ockene 1992	44	133	28	123	7.1%	1.45 [0.97, 2.18]		-
	Stevens 1993	61	453	61	666	12.1%	1.47 [1.05, 2.05]		-
	Simon 1997	20	157	9	142	2.3%	2.01 [0.95, 4.27]		
	Rigotti 1997	25	307	27	308	6.6%	0.93 [0.55, 1.56]		
	Aleixandre 1998	6	27	3	21	0.8%	1.56 [0.44, 5.50]		
	Dornelas 2000	23	54	12	46	3.2%	1.63 [0.92, 2.91]	2000	-
	Glasgow 2000	37	578	22	576	5.4%	1.68 [1.00, 2.80]		-
	Burling 2001	11	100	1	50	0.3%	5.50 [0.73, 41.41]		
	Molyneux 2003	4	91	7	92	1.7%	0.58 [0.18, 1.91]	2003	
	Nakamura 2004	18	500	4	477	1.0%	4.29 [1.46, 12.59]		
	Pedersen 2005	28	54	20	51	5.0%	1.32 [0.86, 2.03]	2005	+-
	Hennrikus 2005	66	666	68	678	16.4%	0.99 [0.72, 1.36]		_
	Kim 2005	28	200	18	201	4.4%	1.56 [0.89, 2.73]	2005	
	Subtotal (95% CI)		3933		3922	72.6%	1.44 [1.25, 1.65]		◆
	Total events	431		305					
	Heterogeneity: Chi²=				$I^2 = 339$	%			
	Test for overall effect:	Z = 5.20 (P < 0.0	0001)					
	1.1.2 Counselling plus	e NDT vor	eue ME	OT alone					
	Fiore 2004	29	274	47	536	7.00	4 04 (0 70 4 07)		
		29 53	168			7.8% 10.7%	1.21 [0.78, 1.87]	1005	
	Jorenby 1995	ეკ 16		44	169		1.21 [0.86, 1.70]		
	Simon 2003	35	102	10 27	107	2.4% 6.6%	1.68 [0.80, 3.53]		
	Wiggers 2006 Subtotal (95% CI)	33	188 732	21	188 1000	27.4%	1.30 [0.82, 2.05] 1.27 [1.02, 1.59]	2000	•
	Total events	133		128					•
	Heterogeneity: Chi ² =		3 (P =		- 0%				
	Test for overall effect:				- 0 70				
	TOSTION OVER AN ENECT.	2-2.12	, - 0.0	٥,					
	Total (95% CI)		4665		4922	100.0%	1.39 [1.24, 1.57]		•
	Total events	564		433					
	Heterogeneity: Chi²=	25.15. df:	= 20 ⊈	= 0.20);	$l^2 = 209$	%			
	Test for overall effect:	z=men	ke@	e mail	.arīz	ona.e	du		0.1 0.2 0.5 1 2 5 10
				,					Favours Control Favours Treatment

Weaknesses of Cochrane

- Products are health care related research only
- Depends on lots of published research
- Resource intensive
 - Experts and time required
- Not amenable to cross-comparing systems
 - Outcomes are usually against a control group
 - Great science, but not for decision-making
- Uncertainty not managed well

Cochrane: But Which Smoking Cessation Intervention is Best?

Telephone

Physician

menke@email.arizona.edu

Therapist

Cochrane: But Which Smoking Cessation Intervention is Best?

Telephone

Physician

menke@email.arizona.edu

Therapist

Bayesian Evidence Synthesis

- Decision-oriented
- Robust to deviations from normal distributions
- May track effects as compared to groups
- Gives relative effect sizes in comparison to a standard
- Can rank treatments which include the various comparisons, including control groups.

Choosing Outcomes

QALYs as Effects

- Morbidity
- Mortality
- Exchangeable in Cost Effectiveness Analysis and Cost Benefit Analysis
- Willingness to pay (WTP)

Cost (per QALY)

A year of life adjusted for its quality or its value. A year in perfect health is considered equal to 1.0 QALY. The value of a year in ill health would be discounted. For example, a year bedridden might have a value equal to 0.5 QALY. [medicineNet.com]

QALY Example: CRC

Search Results (Back) Article/Ratios

Your search returned 60 results

Pick Columns to Display(Sort by)

Article ID	Weight	Health State	Publication Year	Reference
2007-01-0315	0.536 P	ost-op colectomy	2007	Hayes 2007 ANZ J Surg
2007-01-0304	0.6 G	olorectal cancer patient with llowing disease progression	2007	Tappenden 2007 Eur J Cancer
2007-01-0304	0.8 d	olorectal cancer patient prior to sease progression	2007	Tappenden 2007 Eur J Cancer
2007-01-03030	0.83	isease recurrence	2007	de Verteuil 2007 Int J Technol Assess Health Care
2007-01-03030	0.83 N	onoperative management	2007	de Verteuil 2007 Int J Technol Assess Health Care
2007-01-03030	0.83 I	nitial operation	2007	de Verteuil 2007 Int J Technol Assess Health Care
2007-01-0232	0.25	olorectal Cancer, Dukes' D	2007	Tappenden 2007 Gut
2007-01-0232	0.5	olorectal Cancer, Dukes' C	2007	Tappenden 2007 Gut
2007-01-0232	0.7	olorectal Cancer, Dukes' B	2007	Tappenden 2007 Gut
2007-01-0232	0.74	olorectal Cancer, Dukes' A	2007	Tappenden 2007 Gut
1 2 3 4 5 6				

Problems with Effect Size

- A 20% effect size means?
- O 20% get all better?
- O Everyone gets 20% better?
- Some combination?
- 40% get better, 20% die
- Milton Friedman: "Who wants to wade across a river which averages 4 feet deep?"

We Need Some Estimate of the Demand on Resources

- Full evaluations require some sense of tost
- Costs are determined by perspective
 - Payer (reduce payments)
 - Society (improve productivity)
 - Patient (pain relief)
- Opportunity costs
- Indirect costs
- Externalities

A One-slide Course in Health Economics

- Strictly comparative to a current standard (no placebos, please!)
- Welfare economic theory
 - Pareto optimization
 - At least one helped, no one hurt
 - Cost-benefit analysis (consequences)
 - Willingness to pay, contingent valuation
- Operations research and management science
 - Constraint maximization
 - Social decision-making under finite resources
 - Cost-effectiveness method

CEA versus CBA

- Cost benefit analysis (CBA) born out of social welfare theory.
 - Need measure combining morbidity and mortality
 - O QALY
- Cost effectiveness analysis (CEA) born out of management science and operations research
 - Original units

Analytic Perspective

- Depending on perspective ~
 - Patient / consumer
 - Costs of care
 - O Externalities / indirect costs
 - Opportunity costs
 - Health care system
 - Payers
 - Societal includes loss of life and productivity

Conceptual Structure for Bayesian Indirect Comparisons

	Treatment A	Treatment B	Control A	Control B
Study # 1	X	X		
Study # 2	X		X	
Study # 3		X		X
Study # 4	X	X	X	
Study # 5	X			X
Study # 6	X			X
Study # 7	X	X	X	X /

Weight by Study Quality

	Treatment A	Treatment B	Control A	Control B	Study Quality
Study # 1	X	X			10
Study # 2	X		X		4
Study # 3		X		X	9
Study # 4	X	X	X		6
Study # 5	X			X	8
Study # 6	X			X	11
Study # 7	X	X	X	X	7

Compare Treatments B to C

	Treatment A	Treatment B	Treatment C	Control	Study Quality
Study # 1	X	X			10
Study # 2	X		X		4
Study # 3		X		X	9
Study # 4	X		X		6
Study # 5	X			X	8
Study # 6	X			X	1
Study # 7	X	X		X	7

Bayesian Evidence Synthesis Demonstration

- [Run Demo]
- Show organization of studies
- Code
- o Data
- O Trace
- Convergence
- Distributions

WinBUGS Results

Node statistics									
node	mean	sd	MC error	2.5%	median	97.5%	start	sample	^
rk[1]	4.445	0.5528	0.00278	3.0	4.0	5.0	10001	50000	
rk[2]	3.232	0.7578	0.004848	2.0	3.0	4.0	10001	50000	
rk[3]	2.309	0.7888	0.005909	1.0	2.0	4.0	10001	50000	
rk[4]	1.992	0.9466	0.007296	1.0	2.0	4.0	10001	50000	
rk[5]	3.021	1.992	0.009304	1.0	5.0	5.0	10001	50000	
									~

Random effects model for Smoking Cessation data

49 trials (47 + two 3-arm-trials), 96 data points,

5 treatments (var = tx)

1 = baseline - control

2 = quitline

3 = physician minimal

4 = physician intensive

5 = individual counselling

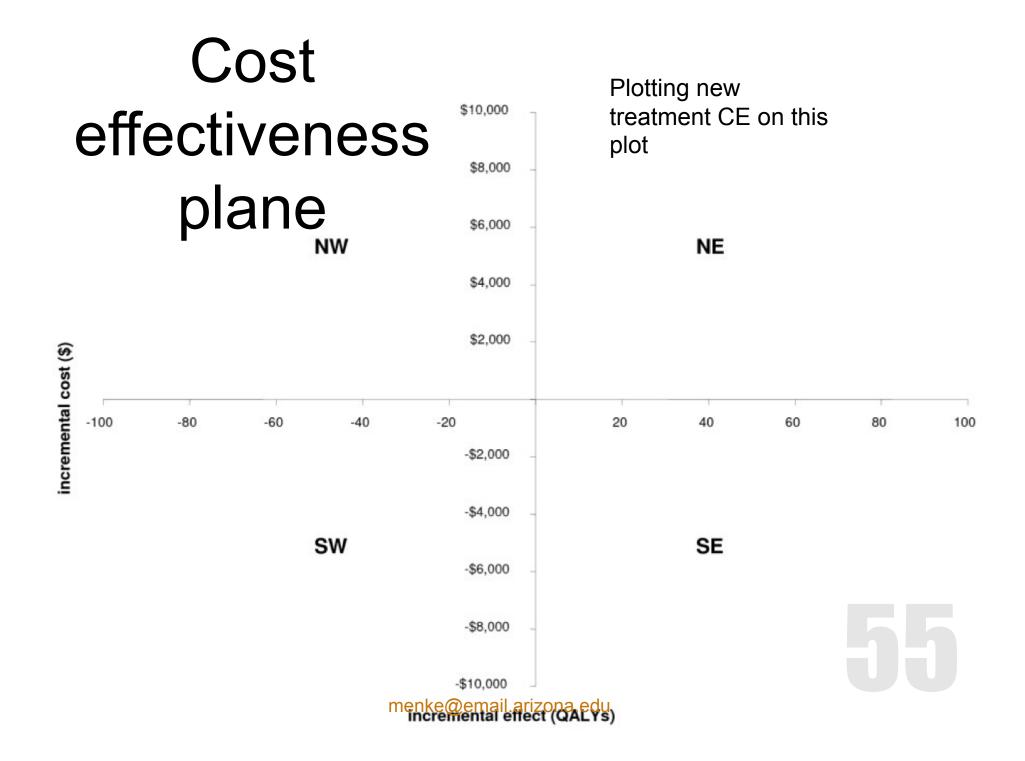
_____menke@email.arizona.edu

After 50,000 samples, Relative Effectiveness is...

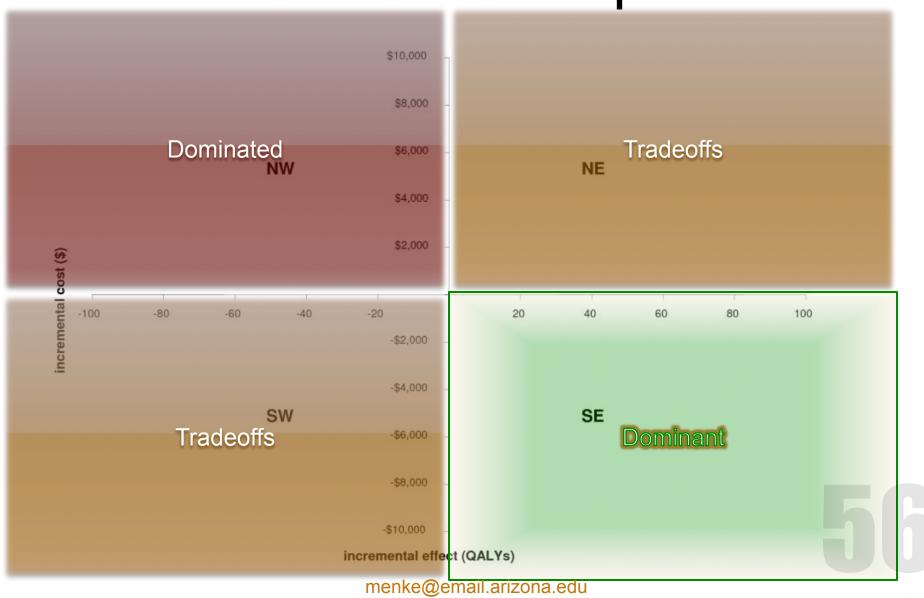
label	Mean rank	SD	Error (X 10 ⁻³)	2.5%	median	97.5%	Distribution of Rankings
Baseline/ control	4.4	0.55	2.8	3	4	5	
Telephone	3.2	0.76	4.8	2	3	4	
Physician - min	2.3	0.78	5.9	1	2	4	
Physician - intense	2.0	0.95	7.2	1	2	4	
Therapist	3.0	2.0	9.3	1	5 arizona.ed	5	

Effectiveness or Cost Effectiveness?

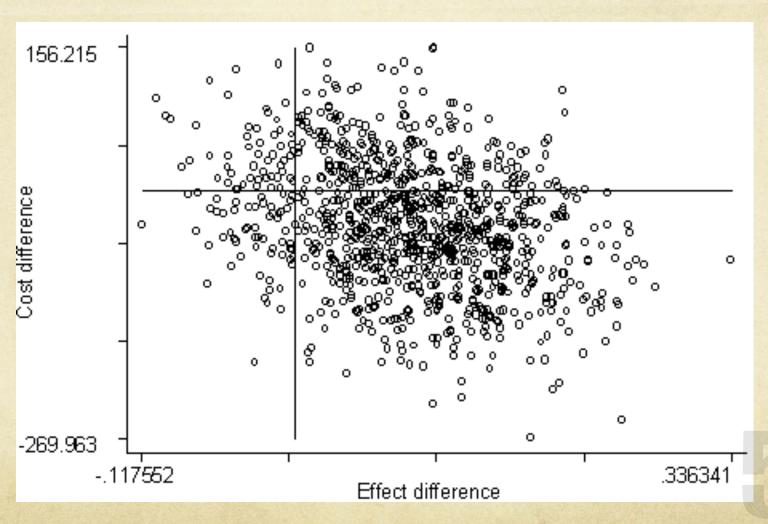
WinBUGS can take different outcomes

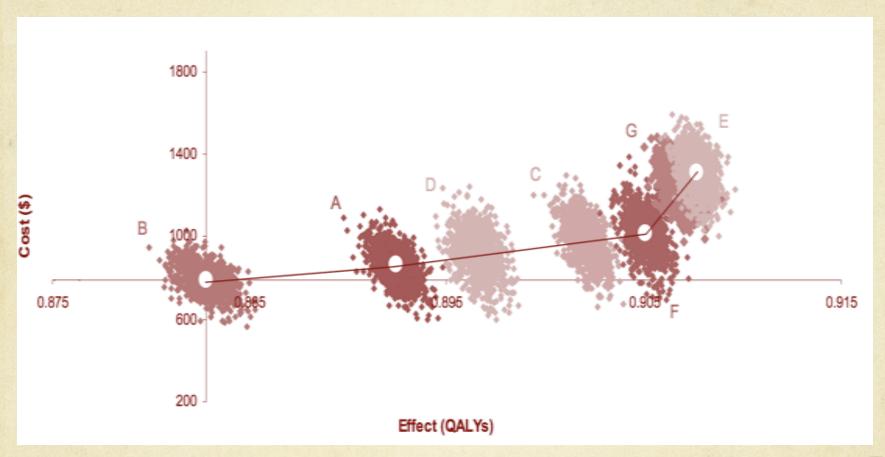

Step 3. Decision Analysis

"A systematic approach to decision making under conditions of imperfect knowledge; a practical application of probability theory. Used to calculate the optimal strategy from among a series of alternative strategies."


Incremental Cost Effectiveness Ratio (ICER)

- Plain cost-effectiveness can mislead
- Something cheap and ineffective can be cost effective
- Also, the ICER method does exactly what we want in Comparative Effectiveness Research: it compares a novel system to a current standard.


The cost effectiveness plane


Cost effectiveness plane

Incremental CE Ratio plot

Multiple ICER's

From: Barton, Briggs, and Fenwick, 2005

Incremental cost effectiveness Ratio

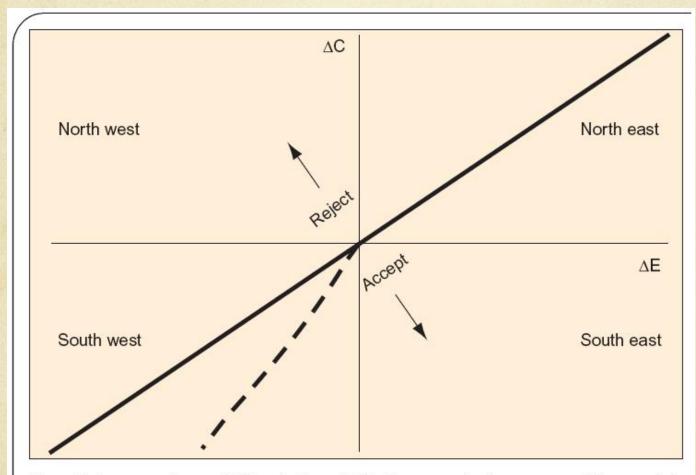


Figure 1. Incremental costs (Δ C) and effects (Δ E) of a new technology over an old one and the maximum acceptable incremental cost–effectiveness ratio without a kink (solid line) and with a kink (dotted line).

54

ICER strength

- Shows CE relative to a current standard of therapy or care
 - A direct comparison of two programs or interventions
 - CE's then compare-able
 - Whereas CE ratios are not directly compare-able
 - That which is barely effective and cheap could be just as cost effective as something very effective and very expensive

STEP 4. Ex post VOI

- Cleaning up the analysis what just happened?
 - Is there enough of an effect to continue looking for evidence?
- Value of information (VOI) analysis
 - Estimates degree of uncertainty
 - Affixes monetary value of reducing uncertainty

Expected value of perfect information

Expected value of perfect information

- "The expected costs of uncertainty can be interpreted as the expected value of perfect information."
 - O Claxton 2006

Expected Value of Perfect Information (EVPI)

 Assume you could "buy" information that perfectly predicts a future outcome

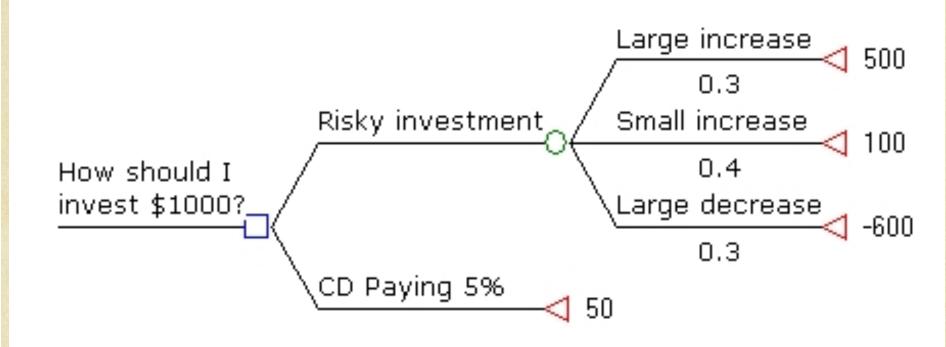
The expected value of perfect information (EVPI) is the difference between expectation of the maximum benefit and expected net benefit:

Personalized Example

- The US economy
 - Credit uncertainty
 - Stock market volatility
- O How much would you pay to reduce uncertainty?
 - There would be an upper limit.
 - Probably not more than what you are "worth"

Briggs Sculpher & Claxton, 2006

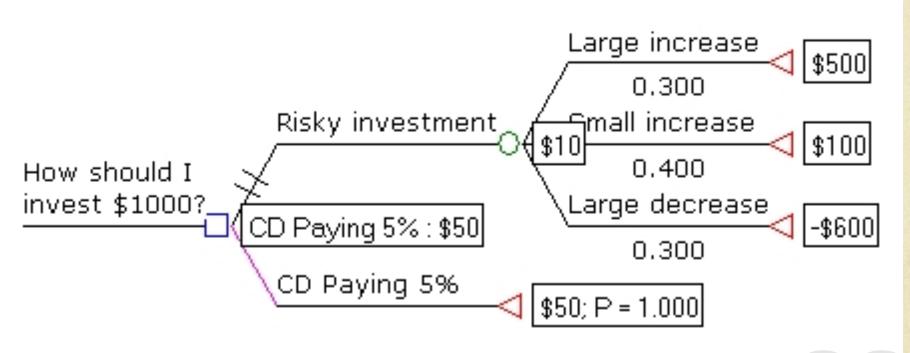
- The expected cost of uncertainty is determined jointly by the probability that
 - 1) a decision based on existing information will be wrong, probability of error, and
 - 2) the consequences of a wrong decision (expected opportunity loss)
- This is variously called "expected cost of uncertainty" or "expected opportunity loss surrounding decisions"



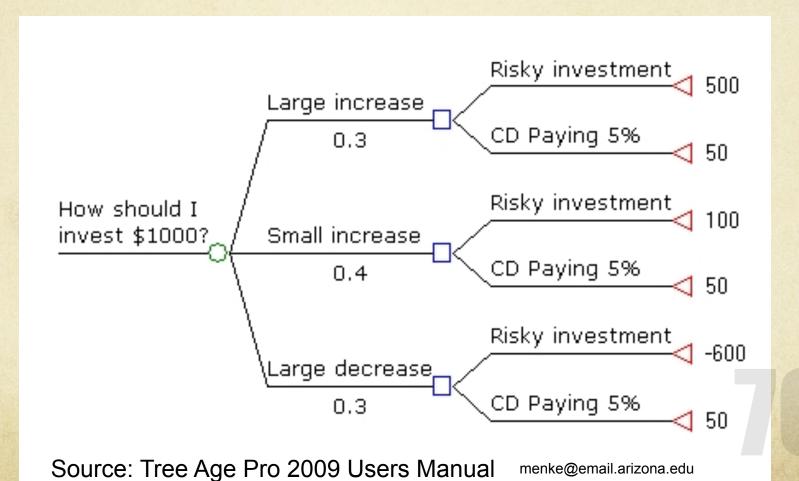
EVPI: Three core tasks

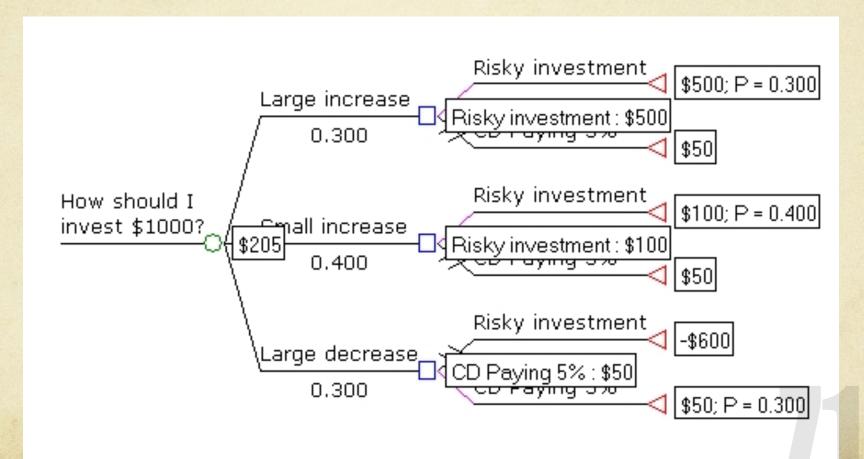
- Decision analytic model to represent the problem
- 2. Probabilistic analysis (PSA)
- 3. Establish the value of additional information

O EVPI estimates are for the individual patient or client!


Calculation of EVPI – An example

Source: Tree Age Pro 2009 Users Manual


Calculation of EVPI – Rollback of Stock Tree



Source: Tree Age Pro 2009 Users Manual

Rearranging the Tree for Best Possible Outcome

Rollback of Best Possible Outcome

Source: Tree Age Pro 2009 Users Manual men

EVPI for Stock Investment

- 0 \$205 \$50 = \$155
- It makes sense to pay up to \$155 for market information that would allow you to predict the outcome

EVPI Conceptually

	Drug A	Drug B	Optimal choice	Maximum net benefit	Opportunity loss if choose "B"
Iteration 1	9	12	В	12	0
Iteration 2	12	10	Α	12	2
Iteration 3	14	20	В	20	0
Iteration 4	11	10	Α	11	1
Iteration 5	14	13	Α	14	1
Expectation	12	13	4.1	13.8	0.8

Current Information: 13
Perfect Information: 13.8
EVPI = 13.8 – 13 = 0.8

menke@email.arizona.ed; Claxton, K – University of York

EVPI

O EVPI (Expected Value of Perfect Information) – the theoretical maximum worth to the decision maker of additional information about uncertain states of nature that is absolutely unerring.

What EVPI Means

- If EVPI > Decision threshold then collecting more information is worthwhile
- Reflects the amount of uncertainty in the data that is present
- One should delay adoption of technologies when the EVPI is large

Situations where EVPI may be useful

- Expensive technologies that have marginal benefits
- Concerns about TX safety it may be worthwhile to delay adoption because the value of additional information exceeds the value gained from immediate adoption
- Setting research priorities for:
 - Health insurance plans
 - Pharmaceutical manufacturers
 - NIH and other government agencies

Conclusion

- Comparative effectiveness research can be accomplished in 4 general steps
 - Establishing prior information value
 - Evidence synthesis
 - Decision analysis
 - Value of information analysis
- There is absolutely no reason why CER cannot be carried out to improve health care policy and decisions.