

EXAMPLE FROM THE POWER TO RENEW

WHAT WORKS

UNLOCKING RENEWABLE ENERGY DEVELOPMENT TO ADDRESS CLIMATE CHANGE: Exploration of Causal Links

American Evaluation Association -

Through QCA

AGENDA

QCA Method **Process for Applying QCA** 2 **Renewable Energy Evaluation** 3 Theory of Change 4 **Country Case Studies** 5 **Developing & Scoring Factors** 6 **Results and Interpretation** Some validation of conclusions 8

WHAT WORKS

QUALITATIVE COMPARATIVE ANALYSIS

QCA is based on two primary assumptions:

1) change is often the result of different combinations of factors, rather than on any one individual factor; and

2) different combinations of factors can produce similar changes

Charles Ragin

who is credited with developing QCA

METHOD: QUALITATIVE COMPARATIVE ANALYSIS (QCA)

- Developed in the 70's, relatively 'new' in application in evaluation
- Analytical technique used for qualitative study of macro social phenomena
- An akin method to quantitative model testing (such as, structural equation modeling)
- Case-Oriented and set-theory method
- Helps identify causal patterns across multiple cases using Boolean algebra

Where can QCA add value?

- Analysis of multiple cases in complex situations
- Identify causal links and explain conditions under which change happens
- Allows for generalization across a group of case studies
- Valuable for small N evaluations (e.g. 5 to 50)

METHOD: PROCESS FOR APPLYING QCA

SOURCE: Intrac

RE EVALUATION: WBG SUPPORT TO RENEWABLE ENERGY

WHY QCA?

- 1) Validate Theory of Change
- 2) Identify pathways for scaling-up RE investments

- Renewable Energy (RE) can help meet energy demand and environmental sustainability
- SDGs and Paris Agreement stress RE as a key solution, with momentous scale-up envisaged
- Dynamically evolving sector expected to continue to disrupt energy sector
- Presently over 25% of global electricity is produced from RE

RE EVALUATION: MULTI-METHOD APPROACH

RE EVALUATION: THEORY OF CHANGE

RE EVALUATION: COUNTRY CASE STUDIES IN EMERGING MARKETS

RE EVALUATION: DEVELOPING A SET OF FACTORS

EXAMPLE: Policy and Regulatory Framework

Substantial & adequate legal & policy framework is adopted and being enforced, w/ policy measures and regulations in place, including funding, where required to incentivize

Significant legal framework in place but w/ noticeable shortcomings in regulations & enforcement, & despite lack of policy clarity, there are some policy-based incentives available

While legal framework exists there is little clarity in implementing polices and regulations, lack of enforcement, and limited or no incentives to invest in RE

Insufficient legal & policy framework with critical shortcomings, and inadequate incentives to mobilize investments in RE

RE EVALUATION: SCORING AND CALIBRATION

ſ									
	BARRIERS						OUTPUTS	OUTCOMES	
Country	Policy and Regulatory	Integration into Power Systems	Improvements to Design & Technical Standards	Strengthen Institutional Capacity	Mitigate Investment Risks	Mobilize Financing	Development of RE	Energy Benefits	Environmental Benefits
China	A (0.80)	B (0.70)	A (0.90)	A (0.90)	B (0.70)	A (0.90)	A (0.84)	A (0.79)	A (0.94)
India	A (0.85)	A (0.80)	B (0.55)	A (0.90)	B (0.60)	B (0.70)	B (0.56)	C (0.36)	B (0.61)
Jordan	A (0.80)	B (0.70)	B (0.70)	C (0.40)	B (0.60)	C (0.40)	C (0.48)	C (0.27)	C (0.41)
Kenya	B (0.70)	D (0.20)	A (0.80)	C (0.40)	B (0.60)	A (0.80)	C (0.40)	C (0.38)	C (0.30)
Mexico	B (0.70)	A (0.90)	B (0.70)	B (0.70)	B (0.60)	B (0.60)	B (0.69)	B (0.60)	B (0.69)
Morocco	B (0.55)	B (0.60)	C (0.40)	C (0.40)	B (0.60)	C (0.40)	B (0.54)	C (0.37)	B (0.58)
Nicaragua	B (0.70)	B (0.60)	C (0.40)	C (0.40)	C (0.40)	C (0.40)	B (0.64)	B (0.57)	B (0.60)
Sri Lanka	C (0.45)	B (0.60)	B (0.60)	C (0.40)	B (0.70)	C (0.40)	B (0.64)	B (0.55)	B (0.68)
Turkey	A (0.80)	A (0.90)	A (0.90)	A (0.80)	B (0.70)	A (0.80)	A (0.86)	A (0.80)	A (0.90)

PROCESS OF DEVELOPING MARIX

1)Specialists assess and score barriers during case preparation

2) Debrief w/ case specialists

3)Calibration workshop for final alignment

TOC Validated. All six barriers have causal link with energy & environment outcomes;

Given validation, further adjustments to ToC was not necessary

Countries that successfully addressed all six barriers scaled-up RE as a result

Observed in China; India; Mexico; Sri Lanka; Turkey

WBG broadly helping client countries reform correct barriers

Policy & Integration were found to be essential (necessary conditions) under all successful reform scenarios

Observed in Nicaragua and Morocco

WB experienced w/ policy reforms; major challenge for IFC/private, Helped identify gap w/ Integration where WBG has more limited experience.

RESULTS

Policy & Integration + Risk Mitigation was additional pathway to scaling-up RE

Observed in Jordan and Morocco

Especially mobilizing private sector investments

Renewable electricity growth still needs to <u>accelerate</u> significantly to meet long-term to <u>sustainable energy goals</u>.

This growth is possible if governments address the three main challenges to faster deployment: policy and regulatory uncertainty; high investment risks in many developing countries; and system integration of wind and solar PV in some countries.

> Renewables 2019 International Energy Association

- A scale-up in RE did not lead to a corresponding increase in the avoidance of CO2
- It reflects the displacement of hydropower by geothermal
- Displacement of one renewable for another would have less incremental environmental impact!

CONTACT IEG

ieg.worldbank.org

