Making Every Child More Visible:
 Combine Data from Multiple
 Assessments to Reveal Needs

Catherine Callow-Heusser, Ph.D.
EndVision Research and Evaluation

Excel or SPSS or R?

Excel and SPSS are shown subsequently
> Everyone has Excel
> Administrators, coaches and teachers constantly request PD for using Excel to analyze data
>Few have SPSS licenses, which are inexpensive for educational users
$>$ Not a single district or school has been interested in using R

- R requires comfort with programming, which in my experiences with professional development for administrators and coaches has not been popular

http://aea365.org/

- Go to aea365.org

■ Search for "Callow"

AEA365 | ATip-a-Day by and for Evaluators

Home About Contribution Guidelines Archive AEA365 Curators

■ Focused on using SPSS to combine data from multiple sources

- Methods using SPSS in 2016 AEA presentation in AEA library

Subscribe to Comments via Email
Subscribe to Comments via RSS
My name is Catherine Callow-Heusser, and I'm the President of EndVision
Research and Evaluation. I sometimes provide pro bono statistical services
to a local school district that is one of Utah's highest performing districts in
elementary reading and math. They build student success despite having
one of the lowest expenditures per pupil in the country.
Hot tip: Underfunded districts appreciate expert help from credible
evaluators! They rarely have staffing resources to run statistics beyond descriptives on the multitudes of assessment data they collect. Get

Search

Nor/15 Catherine Callow-Heusser on
웅
Take Action
Go to AEA Home
Subscribe to AEA365 via Email
Subscribe to AEA365 via RSS

Today, we will ...
Restructure and analyze data to make students visible and identify needs using Microsoft Excel
> Restructure files that have more than one row per student (i.e., DIBELS data files)
$>$ Merge data from multiple files or worksheets
$>$ Create pivot tables to identify groups of students
$>$ Create informational tables from pivot tables
>Sort data files to locate specific students
Discuss findings that result from analyzing data

Accessing Files for This Session

- Go to

> http://www.endvision.net/AEA2016

> Click on filenames to download

- Example.xls
contains original DIBELS Next data
- StateAssessmentData.xIs
contains original State Assessment of Growth and Excellence (SAGE) data from a Utah school
- Combined-DIBELS-SAGE.xIs
contains data combined from both data sets and the Pivot Tables that summarize two variables in the data

Data Files

- Most data systems will export or "Save as" .csv (comma separated variables) files
- Once data are in .csv files,they can be imported by Excel, SPSS, or R
Start by opening data files that need to be restructured in Excel
> Identify files that have multiple rows per student
>Combine and clean data files in Excel
> Use Excel to restructure and combine with one row per student

USING EXCEL TO RESTRUCTURE AND ANALYZE DATA

On each worksheet,

1) Insert a new row at the top
2) Copy the unique identifier into the first cell
3) In the first column that contains data to be combined, type the following function, replacing 1BOY with the appropriate characters and "B" with the column label (if not the second column): ="1BOY."\&B2
4) Copy the function into each cell in the first row for columns that contain data
5) Select the first row, copy, and Paste Special...Values to replace the formula
 with the variable names
6) Delete the second row that contained the original variable names

You can also add data from other files.

Here, l've got two files open from which I want to consolidate data. Both have been cleaned using the previous steps so text data are numerically coded and they have a common CompositeID.
l've opened a new blank file with the cursor in the top left cell.
Select Data...Consolidate. Go to each of the data spreadsheets, select the data to be added, including the leftmost index column, and click on " + ". When you are done adding data, click OK.

Consolidate

All references:
'/Users/cheusser/Documents/[Example_Consolid: [StateAssessmentData.x|s]Sheet1!\$A\$1:\$G\$13

Save the file!

CREATE AN EXCEL PIVOT TABLE

Create an Excel Pivot Table to Aggregate Data

- Once we've combined data sets with each row containing data for a unique student, we can do some analysis.
- We might want to know
$>$ How many students did better/worse (when comparing levels) on EOY DIBELS than they did on BOY DIBELS?
> How well do EOY DIBELS levels align with state assessment levels?
- A pivot table can provide information to answer questions like these.

Pivot Tables Revised in Word

Percentage of 3rd grade students in each category$n=1166$		Utah			
		0-1	2	3-4	Total
DIBELS Next End-ofYear 2014 Composite Score Risk Status	At or Above Benchmark	10	18	62	90
	Below Benchmark	2	1	1	4
	Well Below Benchmark	5	1	0	6
	Total	17	20	63	100
YELLOW = ONE Level Apart GREEN = Accurate Prediction					

Identifying Specific Students

To find students from a particular cell in the Pivot Table,
$>$ Go to the combined data worksheet
>Sort by the variables, with one as the first sorting variable (i.e., DIBELS Composite Level) and the other as the second sorting variable (i.e., SAGE 2014 LA Proficiency)
> Locate the students by

- Finding the values for the first variable, i.e., those whose level was a 1, or Benchmark, on the DIBELS Composite Level
- Within that group, finding students with values for the second variable, i.e., those whose proficiency level on the state assessment was 0 or 1

Pivot Tables Revised in Word

- Identified students who were low performing on both assessments

■ Identified students who performed well on DIBELS but low on state assessment, SAGE

- Discussed mismatch in performance for those who did well on DIBELS but not on SAGE with DIBELS developers
- Implemented interventions for that group of students

Percentage of 3rd grade students in each category$\mathrm{n}=1166$		Utah SAGE 2014 Language Arts Proficiency Levels			Total
		0-1	2	3-4	
DIBELS Next End-ofYear 2014 Composite Score Risk Status	At or Above Benchmark	10	18	62	90
	Below Benchmark	2	1	1	4
	Well Below Benchmark	5	1	0	6
	Total	17	20	63	100

Discussion \& Questions

Cathy Callow-Heusser

Secondary Math Specialist
State Systemic Improvement Plan
Multi-Tiered System of Supports Project
Utah State Office of Education 801-538-7952
Cathy.Callow-Heusser@schools.utah.gov

President
EndVision Research and Evaluation, LLC cheusser@endvision.net 435-757-2724

USING SPSS TO RESTRUCTURE AND ANALYZE DATA

Welcome to the Restructure Data Wizard!
This wizard helps you to restructure your data from multiple variables (columns) in a single case to groups of related cases (rows) or vice versa, or you can choose to transpose your data.

The wizard replaces the current data set with the restructured data. Note that data restructuring cannot be undone.

What do you want to do?
Restructure selected variables into cases
Use this when each case in your current data has some variables that you would like to rearrange into groups of related cases in the new data set.

- Restructure selected cases into variables

Use this when you have groups of related cases that you want to rearrange so that data from each group are represented as a single case in the new data set.

Transpose all data
All cases will become variables and selected variables will become cases in the new data set. (Choosing this option will end the wizard, and the Transpose dialog will appear.)

Start the
 Data...Restructure Data Wizard. We want to restructure cases into new variables so there is one row per student.

Cases to Variables: Sorting Data

The variables that you used to identify case groups in the current file need to be sorted before the file can be restructured. If you are not sure about your data, select "Yes".

Sort the current data?

- Yes - data will be sorted by the Identifier and Index variab...

No - use the data as currently sorted

Hêlp
Cancel
Go Back Continue Done

I recommend letting SPSS sort the data. If data are not sorted, funny things can happen.

Check to Ensure One Row Per Student and Sort

- If you used more than one idenitifier variable to restucture data, make sure files have only one row per student $>$ In SPSS, you can do this by Identifying Duplicate Cases (under the Data menu)
Merge/Delete duplicate cases
Sort on key variable (Student_ID) and save file.

Merging Data Files

Make the file you will be adding data to your active window
Data...Merge Files by adding variables (not cases, which would be new students). Make sure you sort data using identifier variables in each file first.

Add Variables to Data-Wide.sav[DataSet3]

Select a dataset from the list of open datasets or from a file to merge with the active dzet

- An open dataset

SageData.sav[DataSet4]

An external SPSS Statistics data file

Non-SPSS Statistics data files must be opened in SPSS Statistics before they can be used as part of a merge.

Analyze...Descriptive Statistics...Crosstabs

> Crosstabs,
> or cross tabulation, creates a table that shows the joint distribution of two or more variables.

The Cells... option allows you to choose how the table will display. I like to run Crosstabs once with just Observed Counts, and once with just Total Percentages.

$\bigcirc \bigcirc$	Crosstabs: Cell Display
Counts Observed Expected Hide small counts Less than 5	z-test Compare column proportions Adjust p-values (Bonferroni method)
Percentages Row Column Total	Residuals Unstandardized Standardized Adjusted standardized
Noninteger WeightsRound cell counts Round case weightsTruncate cell counts Truncate case weightsNo adjustments	
Help	Cancel Continue

Crosstabs Tables in SPSS

		SAGE_2014LA3Proficiency					Total
		0	1	2	3	4	
Composite_Level. 3_EOY		0	1	0	1	1	3
	At or Above Benchmark	5	116	213	477	242	1053
	Below Benchmark	1	22	10	6	0	39
	Well Below Benchmark	2	60	7	5	0	74
Total		8	199	230	489	243	1169

		SAGE_2014LA3Proficiency					Total
		0	1	2	3	4	
Composite_Level. 3_EOY			0.1\%		0.1\%	0.1\%	0.3\%
	At or Above Benchmark	0.4\%	9.9\%	18.2\%	40.8\%	20.7\%	90.1\%
	Below Benchmark	0.1\%	1.9\%	0.9\%	0.5\%		3.3\%
	Well Below Benchmark	0.2\%	5.1\%	0.6\%	0.4\%		6.3\%
Total		0.7\%	17.0\%	19.7\%	41.8\%	20.8\%	100.0\%

Crosstabs Tables Revised in Word

Percentage of 3rd grade students in each category$n=1166$		Utah SAGE 2014 Language Arts Proficiency Levels			
		0-1	2	3-4	Total
DIBELS Next End-ofYear 2014 Composite Score Risk Status	At or Above Benchmark	10	18	62	90
	Below Benchmark	2	1	1	4
	Well Below Benchmark	5	1	0	6
	Total	17	20	63	100
RED = TWO Levels Apart YELLOW = ONE Level Apart			GREEN = Accurate Prediction		

Identifying Students in Groups

- "Save as" SPSS file to file type Excel
- In Excel, sort by variables of interest to identify groups of students

-		Sort			
Add levels to sort by:			Order	\checkmark My list has headers	
		Sort On		Color//con	
Sort by	SAGE_2014LA3Proficiency	$\hat{\imath}$ Values	\hat{v} Smallest to Largest	\hat{v}	\hat{v}
Then by	Composite_Level.3_EOY	$\hat{\imath}$ Values	\hat{v} A to Z	\hat{v}	,
+ - Copy					
			Options...	Cancel	OK

Crosstabs Tables Revised in Word

- Identified students who were low performing on both assessments
- Identified students who performed well on DIBELS but low on state assessment, SAGE
- Discussed mismatch in performance for those who did well on DIBELS but not on SAGE with DIBELS developers

Percentage of 3rd grade students in each category$n=1166$		Utah SAGE 2014 Language Arts Proficiency Levels			
		0-1	2	3-4	Total
DIBELS Next End-ofYear 2014 Composite Score Risk Status	At or Above Benchmark	10	18	62	90
	Below Benchmark	2	1	1	4
	Well Below Benchmark	5	1	0	6
	Total	17	20	63	100
= TWO Levels Apart YELLOW = ONE Level Apart			GREEN = Accurate Prediction		

Discussion \& Questions

Cathy Callow-Heusser
Secondary Math Specialist
State Systemic Improvement Plan
Multi-Tiered System of Supports Project
Utah State Office of Education
801-538-7952
Cathy.Callow-Heusser@schools.utah.gov

President
EndVision Research and Evaluation, LLC cheusser@endvision.net
435-757-2724

